Skip to main content

Elucidating Agonist-Selective Mechanisms of G Protein-Coupled Receptor Desensitization

  • Protocol
  • First Online:
Book cover Methods for the Discovery and Characterization of G Protein-Coupled Receptors

Part of the book series: Neuromethods ((NM,volume 60))

  • 758 Accesses

Abstract

In pharmacology, a central tenet of receptor theory has been that different agonists acting at a particular G protein-coupled receptor subtype produce the same profile of cellular responses. In recent years, advances in molecular pharmacology and the availability of diverse cell signaling assays have indicated that this idea is not sufficient to explain all the data obtained, and that agonists can produce different response profiles ­following binding to a receptor subtype in a cell. This has been termed biased agonism or functional selectivity­, and is thought to be due to the ability of agonists to stabilize different active conformations of the receptor. Logically, there is no reason why this idea cannot also be extended to receptor regulatory mechanisms, since different receptor conformations could exhibit differential affinities for regulatory elements such as the kinases involved in receptor phosphorylation and desensitization. Nevertheless, great care must be taken when analyzing agonist response and regulatory pathways, since other factors such as differences in agonist efficacy need to be considered as contributing factors to agonist-dependent regulation. In the case of the μ-opioid receptor (MOPr), we have shown that two agonists, morphine and the peptide agonist DAMGO, can induce MOPr desensitization by different mechanisms involving largely protein kinase C (PKC) and G protein-coupled receptor kinase/arrestin respectively. This could explain why opioid agonists have variable clinical profiles and liabilities to induce tolerance and dependence. Here we describe the experimental approaches that can be used to investigate mechanisms of MOPr desensitization with a particular focus on endogenous MOPr in neurons. In addition, we discuss the role that agonist efficacy might play in desensitization and describe methods to estimate agonist efficacy for responses downstream of receptor activation, including arrestin recruitment which can be regarded as both a regulatory and a signaling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J 4:2881–2889

    PubMed  CAS  Google Scholar 

  2. Benovic JL, Strasser RH, Caron MG et al (1986) Beta-adrenergic receptor kinase:identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA 83:2797–2801

    Article  PubMed  CAS  Google Scholar 

  3. Lohse MJ, Benovic JL, Codina J et al (1990) Beta-Arrestin:a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  PubMed  CAS  Google Scholar 

  4. Lohse MJ, Benovic JL, Caron MG et al (1990) Multiple pathways of rapid beta 2-adrenergic receptor desensitization: Delineation with specific inhibitors. J Biol Chem 265:3202–3211

    PubMed  CAS  Google Scholar 

  5. Pitcher J, Lohse MJ, Codina J et al (1992) Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry 31:3193–3197

    Article  PubMed  CAS  Google Scholar 

  6. Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153 Suppl 1:S379–388

    PubMed  CAS  Google Scholar 

  7. Haberstock-Debic H, Kim KA, Yu YJ et al (2005) Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J Neurosci 25:7847–7857

    Article  PubMed  CAS  Google Scholar 

  8. Raymond JR (1995) Multiple mechanisms of receptor-G protein signaling specificity. Am J Physiol 269:F141–158

    PubMed  CAS  Google Scholar 

  9. Urban JD, Clarke WP, von Zastrow M et al (2007) Functional selectivity and classical ­concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  PubMed  CAS  Google Scholar 

  10. Keith DE, Murray SR, Zaki PA et al (1996) Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271:19021–19024

    Article  PubMed  CAS  Google Scholar 

  11. Borgland SL, Connor M, Osborne PB et al (2003) Opioid agonists have a different efficacy profiles for G-protein activation, rapid desensitization, and endocytosis of mu-opioid receptors. J Biol Chem 278:18776–18784

    Article  PubMed  CAS  Google Scholar 

  12. Schulz S, Mayer D, Pfeiffer M et al (2004) Morphine induces terminal mu-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 23:3282–3289

    Article  PubMed  CAS  Google Scholar 

  13. Koch T, Widera A, Bartzsch K et al (2005) Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 67:280–287

    Article  PubMed  CAS  Google Scholar 

  14. Arttamangkul S, Torrecilla M, Kobayashi K et al (2006) Separation of mu-opioid receptor ­desensitization and internalization: ­endogenous receptors in primary neuronal cultures. J Neurosci 26:4118–4125

    Article  PubMed  CAS  Google Scholar 

  15. Harris GC, Williams JT (1991) Transient homologous mu-opioid receptor desensitization in rat locus coeruleus neurons. J Neurosci 11:2574–2581

    PubMed  CAS  Google Scholar 

  16. Yu Y, Zhang L, Yin X et al (1997) Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J Biol Chem 272:28869–28874

    Article  PubMed  CAS  Google Scholar 

  17. Kovoor A, Celver JP, Wu A et al (1998) Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-­coupled receptor kinases is dependent on agonist efficacy. Mol Pharmacol 54:704–711

    PubMed  CAS  Google Scholar 

  18. Whistler JL, von Zastrow M (1998) Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA 95:9914–9919

    Article  PubMed  CAS  Google Scholar 

  19. Alvarez VA, Arttamangkul S, Dang V et al (2002) Mu-opioid receptors: Ligand-dependent activation of potassium conductance, desensitization, and internalization. J Neurosci 22:5769–5776

    PubMed  CAS  Google Scholar 

  20. Blanchet C, Sollini M, Lüscher C (2003) Two distinct forms of desensitization of G-protein coupled inwardly rectifying potassium currents evoked by alkaloid and peptide mu-opioid receptor agonists. Mol Cell Neurosci 24:517–523

    Article  PubMed  CAS  Google Scholar 

  21. Bailey CP, Couch D, Johnson E et al (2003) Mu-opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J Neurosci 23:10515–10520

    PubMed  CAS  Google Scholar 

  22. Terman GW, Jin W, Cheong YP et al (2004) G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. Br J Pharmacol 141:55–64

    Article  PubMed  CAS  Google Scholar 

  23. Clark RB, Knoll BJ, Barber R (1999) Partial agonists and G protein-coupled receptor desensitization. Trends Pharmacol Sci 20:279–286

    Article  PubMed  CAS  Google Scholar 

  24. Mandyam CD, Thakker DR, Christensen JL et al (2002) Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C:a molecular mechanism for heterologous cross-talk. J Pharmacol Exp Ther 302:502–9

    Article  PubMed  CAS  Google Scholar 

  25. Mandyam CD, Thakker DR, Standifer KM (2003) Mu-opioid-induced desensitization of opioid receptor-like 1 and mu-opioid receptors: differential intracellular signaling determines receptor sensitivity. J Pharmacol Exp Ther 306:965–972

    Article  PubMed  CAS  Google Scholar 

  26. Bailey CP, Kelly E, Henderson G (2004) Protein kinase C activation enhances morphine-induced rapid desensitization of mu-opioid receptors in mature rat locus ceruleus neurons. Mol Pharmacol 66:1592–1598

    Article  PubMed  CAS  Google Scholar 

  27. Bailey CP, Smith FL, Kelly E et al (2006) How important is protein kinase C in mu-opioid receptor desensitization and morphine tolerance? Trends Pharmacol Sci 27:558–565

    Article  PubMed  CAS  Google Scholar 

  28. Johnson EA, Oldfield S, Braksator E et al (2006) Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 70:676–685

    Article  PubMed  CAS  Google Scholar 

  29. Bailey CP, Oldfield S, Llorente J et al (2009) Involvement of PKCalpha and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of mu-opioid receptors in mature brain neurons. Br J Pharmacol 158:157–164

    Article  PubMed  CAS  Google Scholar 

  30. Bailey CP, Llorente J, Gabra BH et al (2009) Role of protein kinase C and mu-opioid receptor (MOPr) desensitization in tolerance to morphine in rat locus coeruleus neurons. Eur J Neurosci 29:307–318

    Article  PubMed  CAS  Google Scholar 

  31. Dang VC, Napier IA, Christie MJ (2009) Two distinct mechanisms mediate acute mu-opioid receptor desensitization in native neurons. J Neurosci 29:3322–3327

    Article  PubMed  CAS  Google Scholar 

  32. Chu J, Zheng H, Zhang Y et al (2010) Agonist-dependent mu-opioid receptor signaling can lead to heterologous desensitization. Cell Signal 22:684696

    Article  PubMed  CAS  Google Scholar 

  33. Lewis MM, Watts VJ, Lawler CP et al (1998) Homologous desensitization of the D1A dopamine receptor: efficacy in causing desensitization dissociates from both receptor occupancy and functional potency. J Pharmacol Exp Ther 286:345–353

    PubMed  CAS  Google Scholar 

  34. Simmons MA (2006) Functional selectivity of NK1 receptor signaling:peptide agonists can preferentially produce receptor activation or desensitization. J Pharmacol Exp Ther 319:907–913

    Article  PubMed  CAS  Google Scholar 

  35. Walz W (ed) (2007) Neuromethods, Vol. 38: Patch-clamp analysis: Advanced techniques, Second Edition. Humana, Totowa

    Google Scholar 

  36. Dang VC, Williams JT (2005) Morphine-induced mu-opioid receptor desensitization. Mol Pharmacol 68:1127–1132

    Article  PubMed  CAS  Google Scholar 

  37. Ingram S, Wilding TJ, McCleskey EW et al (1997) Efficacy and kinetics of opioid action on acutely dissociated neurons. Mol Pharmacol 52:136–143

    PubMed  CAS  Google Scholar 

  38. North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol 364:265–280

    PubMed  CAS  Google Scholar 

  39. Connor M, Vaughan CW, Chieng B et al (1996) Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol 119:1614–1618

    PubMed  CAS  Google Scholar 

  40. Christie MJ, Williams JT, North RA (1987) Cellular mechanisms of opioid tolerance:studies in single brain neurons. Mol Pharmacol 32:633–638

    PubMed  CAS  Google Scholar 

  41. Rodriguez-Martin I, Braksator E, Bailey CP et al (2008) Methadone: does it really have low efficacy at mu-opioid receptors? Neuroreport 19:589–593

    Article  PubMed  CAS  Google Scholar 

  42. Bagley EE, Chieng BC, Christie MJ et al (2005) Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. Br J Pharmacol 146:68–76

    Article  PubMed  CAS  Google Scholar 

  43. Johnson EE, Chieng B, Napier I et al (2006) Decreased mu-opioid receptor signalling and a reduction in calcium current density in sensory neurons from chronically morphine-treated mice. Br J Pharmacol 148:947–955

    Article  PubMed  CAS  Google Scholar 

  44. Li AH, Wang HL (2001) G protein-coupled receptor kinase 2 mediates mu-opioid receptor desensitization in GABAergic neurons of the nucleus raphe magnus. J Neurochem 77:435–444

    Article  PubMed  CAS  Google Scholar 

  45. Schechtman D, Mochly-Rosen D (2002) Isozyme-specific inhibitors and activators of protein kinase C. Methods Enzymol 345:470–489

    Article  PubMed  Google Scholar 

  46. Koch WJ, Hawes BE, Inglese J et al (1994) Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signaling. J Biol Chem 269:6193–6197

    PubMed  CAS  Google Scholar 

  47. Pusch, M. and Neher, E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 411, pp. 204–211

    Article  PubMed  CAS  Google Scholar 

  48. Hull LC, Llorente J, Gabra BH et al (2010) The effect of PKC and GRK inhibition on tolerance induced by mu-opioid agonists of different efficacy. J Pharmacol Exp Ther 332:1127–1135

    Article  PubMed  CAS  Google Scholar 

  49. Kong G, Penn R, Benovic JL (1994) A beta-adrenergic receptor kinase dominant negative mutant attenuates desensitization of the beta 2-adrenergic receptor. J Biol Chem 269:13084–13087

    PubMed  CAS  Google Scholar 

  50. Hwang DY, Carlezon WA, Isacson O et al (2001). A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. Hum Gene Ther 12:1731–1740

    Article  PubMed  CAS  Google Scholar 

  51. Jaber M, Koch WJ, Rockman H et al (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 93:12974–12979

    Article  PubMed  CAS  Google Scholar 

  52. Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  PubMed  CAS  Google Scholar 

  53. Dang VC, Christie MJ (2006) Beta-arrestin-2-independent regulation of mu opioid receptor. Soc Neurosci Abstr 32:426.11

    Google Scholar 

  54. Walwyn W, Evans CJ, Hales TG (2007) Beta-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J Neurosci 27:5092–5104

    Article  PubMed  CAS  Google Scholar 

  55. Koch T, Kroslak T, Mayer P et al (1997) Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitisation. J Neurochem 69:1767–1770

    Article  PubMed  CAS  Google Scholar 

  56. Connor M, Osborne OB, Christie MJ (2004) Mu-opioid receptor desensitization:is morphine different? Br J Pharmacol 143:685-696

    Article  PubMed  CAS  Google Scholar 

  57. Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141162.

    Article  PubMed  CAS  Google Scholar 

  58. Black JW, Leff P, Shankley NP et al (1985) An operational model of pharmacological agonism: the effect of E ⁄ (A) curve shape on agonist dissociation constant estimation. Br J Pharmacol 84:561–571

    PubMed  CAS  Google Scholar 

  59. Osborne PB, Williams JT (1995) Characterization of acute homologous desensitization of mu-opioid receptor-induced currents in locus coeruleus neurones. Br J Pharmacol 115:925932

    PubMed  CAS  Google Scholar 

  60. Clark MJ, Furman CA, Gilson TD et al (2006) Comparison of the relative efficacy and potency of mu-opioid agonists to activate Galpha i/o proteins containing a pertussis toxin insensitive mutation. J Pharmacol Exp Ther 317:858864

    Article  PubMed  CAS  Google Scholar 

  61. Clarke WP, Bond RA (1998) The elusive nature of intrinsic efficacy. Trends Pharmacol Sci 19:270276

    Article  PubMed  CAS  Google Scholar 

  62. Christopoulos A, El-Fakahany EE (1999) Qualitative and quantitative assessment of relative agonist efficacy. Biochem Pharmacol 58:735748

    Article  PubMed  CAS  Google Scholar 

  63. Selley DE, Liu Q, Childers SR (1998) Signal transduction correlates of mu-opioid agonist intrinsic efficacy: Receptor-stimulated (35S)GTPgammaS binding in mMOR-CHO cells and rat thalamus. J Pharmacol Exp Ther 285:496505

    PubMed  CAS  Google Scholar 

  64. Ehlert FJ (1985) The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol Pharmacol 28:410421

    PubMed  CAS  Google Scholar 

  65. Furchgott RF, and Bursztyn P (1967) Comparison of dissociation constants and of relative efficacies of selected agonists acting on parasympathomimetic receptors. Ann NY Acad Sci 144:882893

    Article  CAS  Google Scholar 

  66. Law P-Y, Erickson LJ, El-Kouhen R et al (2000) Receptor density and recycling affect the rate of agonist-induced desensitization of mu-opioid receptor. Mol Pharmacol 58:388398

    PubMed  CAS  Google Scholar 

  67. Zheng H, Loh HH, Law PY (2008) Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) translocate to nucleus in contrast to G protein-dependent ERK activation. Mol Pharmacol 73:178–190

    Article  PubMed  CAS  Google Scholar 

  68. Harrison C, Traynor JR (2003) The (35S)GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci 12:489–508

    Article  Google Scholar 

  69. Van Koppen CJ, Jakobs KH (2004) Arrestin-independent internalization of G protein-coupled receptors. Mol Pharmacol 66:365–367

    Article  PubMed  Google Scholar 

  70. Kallal L, Benovic JL (2000) Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. Trends Pharmacol Sci 21:175–180

    Article  PubMed  CAS  Google Scholar 

  71. Mundell SJ, Matharu AL, Pula G et al (2001) Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. J Neurochem 78:546–551

    Article  PubMed  CAS  Google Scholar 

  72. Mundell SJ, Pula G, McIlhinney RA et al (2004) Desensitization and internalization of metabotropic glutamate receptor 1a following activation of heterologous Gq/11-coupled receptors. Biochemistry 43:7541–7551

    Article  PubMed  CAS  Google Scholar 

  73. Krasel C, Bunemann M, Lorenz K et al (2005) Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J Biol Chem 280:9528–9535

    Article  PubMed  CAS  Google Scholar 

  74. van Der Lee MM, Bras M, van Koppen CJ et al (2008) Beta-arrestin recruitment assay for the identification of agonists of the sphingosine 1-phosphate receptor EDG1. J Biomol Screen 13:986–998

    Article  Google Scholar 

  75. Johnson EE, Christie MJ, Connor M (2005) The role of opioid receptor phosphorylation and trafficking in adaptations to persistent opioid treatment. Neurosignals 14:290–302

    Article  PubMed  CAS  Google Scholar 

  76. Busillo JM, Armando S, Sengupta R et al (2010) Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 285:7805–7817

    Article  PubMed  CAS  Google Scholar 

  77. Kobilka BK, Gether U (2002) Use of fluorescence spectroscopy to study conformational changes in the beta 2-adrenoceptor. Methods Enzymol 343:170–182

    Article  PubMed  Google Scholar 

  78. Zurn A, Zabel U, Vilardaga JP et al (2009) Fluorescence resonance energy transfer ­analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol Pharmacol 75:534–541

    Article  PubMed  CAS  Google Scholar 

  79. McPherson J, Rivero G, Baptist M et al (2010) mu-Opioid receptor internalization: correlation of agonist operational efficacy for G protein activation with ability to activate processes leading to internalization. Mol Pharmacol 78: 756–766

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris P. Bailey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bailey, C.P., Kelly, E. (2011). Elucidating Agonist-Selective Mechanisms of G Protein-Coupled Receptor Desensitization. In: Stevens, C. (eds) Methods for the Discovery and Characterization of G Protein-Coupled Receptors. Neuromethods, vol 60. Humana Press. https://doi.org/10.1007/978-1-61779-179-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-179-6_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-178-9

  • Online ISBN: 978-1-61779-179-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics