Skip to main content

In Silico Tools for qPCR Assay Design and Data Analysis

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

qPCR instruments are supplied with basic software packages that enable the measurement of fluorescent changes, calculations of quantification cycle (C q ) values, the generation of standard curves and subsequent relative target nucleic acid quantity determination. However, detailed assessments of the technical parameters underlying C q values and their translation into biological meaningful results require validation of these basic calculations through further analyses such as qPCR efficiency correction, normalization to multiple reference genes, averaging and statistical tests. Some instruments incorporate some of these features, while others offer additional tools to complement the basic running software, in many cases providing those that are described below. In this chapter, there is a detailed description of some of these programs and recommended strategies for the design of robust qPCR assays. Some of the packages available for validation of the resulting C q data and detailed statistical analysis are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bustin, S. A., Benes, V., Garson, J. A., et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, 611–622.

    Article  PubMed  CAS  Google Scholar 

  2. Bustin, S. A. (2010) Why the need for qPCR publication guidelines? – The case for MIQE. Methods 50, 217–226.

    Article  PubMed  CAS  Google Scholar 

  3. Crofts, L. A., Hancock, M. S., Morrison, N. A., and Eisman, J. A. (1998) Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts, Proc Natl Acad Sci USA 95, 10529–10534.

    Article  PubMed  CAS  Google Scholar 

  4. Lefever, S., Vandesompele, J., Speleman, F., and Pattyn, F. (2009) RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res 37, D942–D945.

    Article  PubMed  CAS  Google Scholar 

  5. Pattyn, F., Robbrecht, P., De Paepe, A., et al. (2006) RTPrimerDB: the real-time PCR primer and probe database, major update 2006. Nucleic Acids Res 34, D684–D688.

    Article  PubMed  CAS  Google Scholar 

  6. Pattyn, F., Speleman, F., De Paepe, A., and Vandesompele, J. (2003) RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res 31, 122–123.

    Article  PubMed  CAS  Google Scholar 

  7. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.

    Article  PubMed  CAS  Google Scholar 

  8. SantaLucia, J., Jr. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95, 1460–1465.

    Google Scholar 

  9. Bommarito, S., Peyret, N., and SantaLucia, J., Jr. (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucl Acids Res 28, 1929–1934.

    Google Scholar 

  10. Peyret, N., Seneviratne, P. A., Allawi, H. T., and SantaLucia, J., Jr. (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38, 3468–3477.

    Google Scholar 

  11. Allawi, H. T., and SantaLucia, J., Jr. (1998) Nearest-neighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37, 9435–9444.

    Google Scholar 

  12. Allawi, H. T., and SantaLucia, J., Jr. (1998) Thermodynamics of internal C.T mismatches in DNA. Nucleic Acids Res 26, 2694–2701.

    Google Scholar 

  13. Allawi, H. T., and SantaLucia, J., Jr. (1998) Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA. Biochemistry 37, 2170–2179.

    Google Scholar 

  14. Allawi, H. T., and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36, 10581–10594.

    Google Scholar 

  15. Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.

    Article  PubMed  CAS  Google Scholar 

  16. He, L., Kierzek, R., SantaLucia, J., Jr., et al. (1991) Nearest-neighbor parameters for G.U mismatches: [formula; see text] is destabilizing in the contexts [formula; see text] and [formula; see text] but stabilizing in [formula; see text]. Biochemistry 30, 11124–11132.

    Google Scholar 

  17. SantaLucia, J., Jr., Kierzek, R., and Turner, D. H. (1991) Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C.+ pairs. Biochemistry 30, 8242–8251.

    Google Scholar 

  18. SantaLucia, J., Jr., Kierzek, R., and Turner, D. H. (1990) Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry 29, 8813–8819.

    Google Scholar 

  19. Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30, e36.

    Article  PubMed  Google Scholar 

  20. Andersen, C. L., Jensen, J. L., and Orntoft, T. F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245–5250.

    Article  PubMed  CAS  Google Scholar 

  21. Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, 0034.0031–0034.0011.

    Google Scholar 

  22. Hellemans, J., Mortier, G., De Paepe, A., et al. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8, R19.

    Article  PubMed  Google Scholar 

  23. Pabinger, S., Thallinger, G. G., Snajder, R., et al. (2009) QPCR: Application for real-time PCR data management and analysis. BMC Bioinformatics 10, 268.

    Article  PubMed  Google Scholar 

  24. Lefever, S., Hellemans, J., Pattyn, F., et al. (2009) RDML: structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res 37, 2066–2069.

    Article  Google Scholar 

Download references

Acknowledgements

S.A.B. would like to thank the charity B&CR (Charity Number 1119105) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Bustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bustin, S., Bergkvist, A., Nolan, T. (2011). In Silico Tools for qPCR Assay Design and Data Analysis. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics