Skip to main content

Comparative View of In Silico DNA Sequencing Analysis Tools

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

DNA sequencing is an important tool for discovery of genetic variants. The task of detecting single-nucleotide variants is complicated by noise and sequencing artifacts in sequencing data. Several in silico tools have been developed to assist this process. These tools interpret the raw chromatogram data and perform a specialized base-calling and quality-control assessment procedure to identify variants. The approach used to identify variants differs between the tools, with some specific to SNPs and other for Indels. The choice of a tool is guided by the design of the sequencing project and the nature of the variant to be discovered. In this chapter, these tools are compared to facilitate the choice of a tool used for variant discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger, F., Nicklen, S., Coulson, A. R. (1992) DNA sequencing with chain-terminating inhibitors. 1977, Biotechnology 24, 104–108.

    PubMed  CAS  Google Scholar 

  2. MacBeath, J. R., Harvey, S. S., Oldroyd, N. J. (2001) Automated fluorescent DNA sequencing on the ABI PRISM 377, Methods Mol Biol 167, 119–152.

    PubMed  CAS  Google Scholar 

  3. Marth, G. T., Korf, I., Yandell, M. D., Yeh, R. T., Gu, Z., Zakeri, H., Stitziel, N. O., Hillier, L., Kwok, P. Y., Gish, W. R. (1999) A general approach to single-nucleotide polymorphism discovery, Nat Genet 23, 452–456.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi, M., Matsuda, F., Margetic, N., Lathrop, M. (2003) Automated identification of single nucleotide polymorphisms from sequencing data, J Bioinform Comput Biol 1, 253–265.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, J., Wheeler, D. A., Yakub, I., Wei, S., Sood, R., Rowe, W., Liu, P. P., Gibbs, R. A., Buetow, K. H. (2005) SNPdetector: a software tool for sensitive and accurate SNP detection, PLoS Comput Biol 1, e53.

    Article  PubMed  Google Scholar 

  6. Weckx, S., Del-Favero, J., Rademakers, R., Claes, L., Cruts, M., De Jonghe, P., Van Broeckhoven, C., De Rijk, P. (2005) novoSNP, a novel computational tool for sequence variation discovery, Genome Res 15, 436–442.

    Article  PubMed  CAS  Google Scholar 

  7. Manaster, C., Zheng, W., Teuber, M., Wachter, S., Doring, F., Schreiber, S., Hampe, J. (2005) InSNP: a tool for automated detection and visualization of SNPs and InDels, Hum Mutat 26, 11–19.

    Article  PubMed  CAS  Google Scholar 

  8. Crowe, M. L. (2005) SeqDoC: rapid SNP and mutation detection by direct comparison of DNA sequence chromatograms, BMC Bioinformatics 6, 133.

    Article  PubMed  Google Scholar 

  9. Ewing, B., Green, P. (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities, Genome Res 8, 186–194.

    PubMed  CAS  Google Scholar 

  10. Dicks, E., Teague, J. W., Stephens, P., Raine, K., Yates, A., Mattocks, C., Tarpey, P., Butler, A., Menzies, A., Richardson, D., Jenkinson, A., Davies, H., Edkins, S., Forbes, S., Gray, K., Greenman, C., Shepherd, R., Stratton, M. R., Futreal, P. A., Wooster, R. (2007) AutoCSA, an algorithm for high throughput DNA sequence variant detection in cancer genomes, Bioinformatics 23, 1689–1691.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, K., McLellan, M. D., Ding, L., Wendl, M. C., Kasai, Y., Wilson, R. K., Mardis, E. R. (2007) PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data, Genome Res 17, 659–666.

    Article  PubMed  CAS  Google Scholar 

  12. Ngamphiw, C., Kulawonganunchai, S., Assawamakin, A., Jenwitheesuk, E., Tongsima, S. (2008) VarDetect: a nucleotide sequence variation exploratory tool, BMC Bioinformatics 9 Suppl 12, S9.

    Article  PubMed  Google Scholar 

  13. Wegrzyn, J. L., Lee, J. M., Liechty, J., Neale, D. B. (2009) PineSAP – sequence alignment and SNP identification pipeline, Bioinformatics 25, 2609–2610.

    Article  PubMed  CAS  Google Scholar 

  14. Bhangale, T. R., Stephens, M., Nickerson, D. A. (2006) Automating resequencing-based detection of insertion-deletion polymorphisms, Nat Genet 38, 1457–1462.

    Article  PubMed  CAS  Google Scholar 

  15. Nickerson, D. A., Tobe, V. O., Taylor, S. L. (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing, Nucleic Acids Res 25, 2745–2751.

    Article  PubMed  CAS  Google Scholar 

  16. Staden, R. (1996) The Staden sequence analysis package, Mol Biotechnol 5, 233–241.

    Article  PubMed  CAS  Google Scholar 

  17. Seroussi, E., Ron, M., Kedra, D. (2002) ShiftDetector: detection of shift mutations, Bioinformatics 18, 1137–1138.

    Article  PubMed  CAS  Google Scholar 

  18. Dmitriev, D. A., Rakitov, R. A. (2008) Decoding of superimposed traces produced by direct sequencing of heterozygous indels, PLoS Comput Biol 4, e1000113.

    Article  PubMed  Google Scholar 

  19. Smith, T. F., Waterman, M. S. (1981) Identification of common molecular subsequences, J Mol Biol 147, 195–197.

    Article  PubMed  CAS  Google Scholar 

  20. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990) Basic local alignment search tool, J Mol Biol 215, 403–410.

    PubMed  CAS  Google Scholar 

  21. http://mekentosj.com/science/4peaks/

  22. http://www.mbio.ncsu.edu/bioedit/bioedit.html

  23. http://www.geospiza.com/Products/finchtv.shtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sissades Tongsima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tongsima, S., Assawamakin, A., Piriyapongsa, J., Shaw, P.J. (2011). Comparative View of In Silico DNA Sequencing Analysis Tools. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics