Skip to main content

Representation, Simulation, and Hypothesis Generation in Graph and Logical Models of Biological Networks

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

This chapter presents a discussion of metabolic modeling from graph theory and logical modeling perspectives. These perspectives are closely related and focus on the coarse structure of metabolism, rather than the finer details of system behavior. The models have been used as background knowledge for hypothesis generation by Robot Scientists using yeast as a model eukaryote, where experimentation and machine learning are used to identify additional knowledge to improve the metabolic model. The logical modeling concept is being adapted to cell signaling and transduction biological networks.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–1664.

    Article  PubMed  CAS  Google Scholar 

  2. Csete, M. E., and Doyle, J. C. (2002) Reverse engineering of biological complexity. Science 295, 1664–1669.

    Article  PubMed  CAS  Google Scholar 

  3. Chong, L., and Ray, L. B. (2002) Introduction to special issue. Whole-istic biology. Science 295, 1661.

    Article  CAS  Google Scholar 

  4. Davidson, E. H., Rast, J. P., and Oliveri, P., et al. (2002) A genomic regulatory network for development. Science 295, 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  5. Kanehisa, M., and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30.

    Article  PubMed  CAS  Google Scholar 

  6. Kanehisa, M. (1997) A database for post-genome analysis. Trends Genet. 13, 375–376.

    Article  PubMed  CAS  Google Scholar 

  7. Karp, P. D., Riley, M., Paley, S. M., Pellegrini-Toole, A., and Krummenacker, M. (1996) EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 24, 32–39.

    Article  PubMed  CAS  Google Scholar 

  8. Feng, X., and Rabitz, H. (2004) Optimal identification of biochemical reaction networks. Biophys. J. 86, 1270–1281.

    Article  PubMed  CAS  Google Scholar 

  9. Bratko I. (1986) Prolog Programming for Artificial Intelligence. Reading, MA: Addison Wesley International Computer Science Series.

    Google Scholar 

  10. Lemke, N., Heredia, F., Barcellos, C. K., Dor Reis A. N., and Mombach, J. C. (2004) Essentiality and damage in metabolic networks. Bioinformatics 20, 115–119.

    Article  PubMed  CAS  Google Scholar 

  11. Lemke, N., Heredia, F., Barcellos, C. K., and Mombach, J. C. (2003). A method to identify essential enzymes in the metabolism: application to Escherichia coli. In: Priami, C. (ed.), Proceedings of the First International Workshop on Computational Methods in Systems Biology (pp. 142–148). London, UK: Springer.

    Chapter  Google Scholar 

  12. Fages, F., Soliman, S., and Chabrier-Rivier, N. (2004) Modeling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. Biol. Phys. Chem. 4, 64–73.

    Article  CAS  Google Scholar 

  13. Gershenson, C.(2002) Classification of Random Boolean Networks. In: Standish, R., Abbas, H., and Bedau, M. (eds.), Artificial Life VIII. Proceedings of the Eighth International Conference on Artificial Life (pp. 1–8). Cambridge, MA: MIT Press.

    Google Scholar 

  14. Kauffman, S., Peterson, C., Samuelsson, B., and Troein, C. (2003) Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. USA 100, 14796–14799.

    Article  PubMed  CAS  Google Scholar 

  15. King, R. D., Whelan, K. E., Jones, F. M., et al. (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252.

    Article  PubMed  CAS  Google Scholar 

  16. King, R. D., Rowland, J. J. R., Oliver, S. G., et al. (2009) The automation of science. Science 324, 85–89.

    Article  PubMed  CAS  Google Scholar 

  17. Klamt, S., Haus, U. U., and Theis, F. (2005) Hypergraphs and cellular networks. PLoS Comput. Biol. 5, 1–6.

    Google Scholar 

  18. Chartrand, G., and Lesniak, L. (2004) Graphs and Digraphs. New York, NY: Chapman and Hall/CRC.

    Google Scholar 

  19. Christiensen, T. S., Oliviera, A. P., and Nielsen, J. (2009) Reconstruction and logical modeling of the glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Syst. Biol. 3, 7.

    Article  Google Scholar 

  20. Rokach, L., and Maimon, O. (2005) Top down induction of decision trees classifiers: a survey. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. v35 i4, 476–487.

    Article  Google Scholar 

  21. Montgomery, D. C., Peck, E. A., and Vining, G. G. (2001) Introduction to Linear Regression Analysis. New York, NY: Wiley.

    Google Scholar 

  22. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H. (2009) The WEKA data mining software: an update. SIGKDD Explorations 11(1).

    Google Scholar 

  23. Muggleton, S., and DeRaedt, L. (1994) Inductive logic programming: theory and methods. J. Logic Programming 19(20), 629–679.

    Article  Google Scholar 

  24. Ray, O., Clare, A., Liakata, M., Soldatova, L., Whelan, K., and King, R. D. (2009) Towards the automation of scientific method. In: Proceedings of IJCAI'09 Workshop on Abductive and Inductive Knowledge Development (pp. 27–33). Pasadena, CA.

    Google Scholar 

  25. Whelan, K. E., and King, R. D. (2008) Using a logical model to predict the growth of yeast. BMC Bioinformatics 9, 97.

    Google Scholar 

  26. Muggleton, S., and Bryant, C. (2000) Theory completion using inverse entailment. In: Cussens, J. and Frisch, A. (eds.), Inductive Logic Programming, LNCS 1866 (pp. 130–146). London, UK: Springer.

    Google Scholar 

  27. Ray, O. (2009) Nonmonotonic abductive inductive learning. J. Appl. Logic 7, 329–340.

    Article  Google Scholar 

  28. Förster, J., Famili, I., Fu, P., Palsson B. Ø., and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Whelan, K., Ray, O., King, R.D. (2011). Representation, Simulation, and Hypothesis Generation in Graph and Logical Models of Biological Networks. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics