Skip to main content

Genome-Scale Metabolic Models of Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Systematic analysis of Saccharomyces cerevisiae metabolic functions and pathways has been the subject of extensive studies and established in many aspects. With the reconstruction of the yeast genome-scale metabolic (GSM) network and in silico simulation of the GSM model, the nature of the underlying cellular processes can be tested and validated with the increasing metabolic knowledge. GSM models are also being exploited in fundamental research studies and industrial applications. In this chapter, the principle concepts for construction, simulation and validation of GSM models, progressive applications of the yeast GSM models, and future perspectives are described. This will support and encourage researchers who are interested in systemic analysis of yeast metabolism and systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen, J., and Jewett, M. C. (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8, 122–131.

    Article  PubMed  CAS  Google Scholar 

  2. Spier, R. E. (2000) Yeast as a cell factory. Enzyme Microb. Technol. 26, 639.

    Article  PubMed  CAS  Google Scholar 

  3. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 546, 563–567.

    Article  Google Scholar 

  4. Botstein, D., Chervitz, S. A., and Cherry, J. M. (1997) Yeast as a model organism. Science 277, 1259–1260.

    Article  PubMed  CAS  Google Scholar 

  5. Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., et al. (2002) Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404.

    PubMed  CAS  Google Scholar 

  6. Bassett, D. E., Jr., Boguski, M. S., and Hieter, P. (1996) Yeast genes and human disease. Nature 379, 589–590.

    Article  PubMed  CAS  Google Scholar 

  7. Foury, F. (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10.

    Article  PubMed  CAS  Google Scholar 

  8. Perocchi, F., Mancera, E., and Steinmetz, L. M. (2008) Systematic screens for human disease genes, from yeast to human and back. Mol. Biosyst. 4, 18–29.

    Article  PubMed  CAS  Google Scholar 

  9. Petranovic, D., and Nielsen, J. (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol. 26, 584–590.

    Article  PubMed  CAS  Google Scholar 

  10. Sturgeon, C. M., Kemmer, D., Anderson, H. J, and Roberge, M. (2006) Yeast as a tool to uncover the cellular targets of drugs. Biotechnol. J. 1, 289–298.

    Article  PubMed  CAS  Google Scholar 

  11. Mutka, S. C., Bondi, S. M., Carney, J. R., Da Silva, N. A., and Kealey J. T. (2006) Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 6, 40–47.

    Article  PubMed  CAS  Google Scholar 

  12. Wattanachaisaereekul, S., Lantz, A. E., Nielsen, M. L., and Nielsen, J. (2008) Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab. Eng. 10, 246–254.

    Article  PubMed  CAS  Google Scholar 

  13. Ro, D. K., and Douglas, C. J. (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J. Biol. Chem. 279, 2600–2607.

    Article  PubMed  CAS  Google Scholar 

  14. Asadollahi, M. A., Maury, J., Moller, K., et al. (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. Bioeng. 99, 666–677.

    Article  PubMed  CAS  Google Scholar 

  15. Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H., and Misawa, N. (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 58, 1112–1114.

    Article  PubMed  CAS  Google Scholar 

  16. Dejong, J. M., Liu, Y., Bollon, A. P., et al. (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 212–224.

    Article  PubMed  CAS  Google Scholar 

  17. Thim, L., Hansen, M. T., Norris, K., et al. (1986) Secretion and processing of insulin precursors in yeast. Proc. Natl. Acad. Sci. USA 83, 6766–6770.

    Article  PubMed  CAS  Google Scholar 

  18. Thim, L., Hansen, M. T., and Sorensen, A. R. (1987) Secretion of human insulin by a transformed yeast cell. FEBS Lett. 212, 307–312.

    Article  PubMed  CAS  Google Scholar 

  19. Bro, C., Regenberg, B., Förster, J., and Nielsen, J. (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8, 102–111.

    Article  PubMed  CAS  Google Scholar 

  20. Guo, Z. P., Zhang, L., Ding, Z. Y., Wang, Z. X., and Shi, G. Y. (2009) Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Appl. Microbiol. Biotechnol. 82, 287–292.

    Article  PubMed  CAS  Google Scholar 

  21. Boros, L. G., and Boros, T. F. (2007) Use of metabolic pathway flux information in anticancer drug design. Ernst Schering Found. Symp. Proc. 4, 189–203.

    Article  PubMed  Google Scholar 

  22. Biochemical Pathways– Metabolic Pathways. (http://www.expasy.ch/cgi-bin/show_thumbnails.pl).

  23. Covert, M. W., Schilling, C. H., Famili, I., et al. (2001) Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179–186.

    Article  PubMed  CAS  Google Scholar 

  24. Weng, S., Dong, Q., Balakrishnan, R., et al. (2003) Saccharomyces Genome database (SGD) provides biochemical and structural information for budding yeast proteins. Nucleic Acids Res. 31, 216–218.

    Article  PubMed  CAS  Google Scholar 

  25. Guldener, U., Munsterkotter, M., Kastenmuller, G., et al. (2005) CYGD: the comprehensive yeast genome database. Nucleic Acids Res. 33, D364–D368.

    Article  PubMed  CAS  Google Scholar 

  26. Godzik, A., Jambon, M., and Friedberg, I. (2007) Computational protein function prediction: are we making progress? Cell. Mol. Life Sci. 64, 2505–2511.

    Article  PubMed  CAS  Google Scholar 

  27. Kanehisa, M., and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30.

    Article  PubMed  CAS  Google Scholar 

  28. Joshi-Tope, G., Gillespie, M., Vastrik, I., et al. (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432.

    Article  PubMed  CAS  Google Scholar 

  29. Vastrik, I., D’Eustachio, P., Schmidt, E., et al. (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 8, R39.

    Article  PubMed  Google Scholar 

  30. Caspi, R., Foerster, H., Fulcher, C. A., et al. (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 36, D623–D631.

    Article  PubMed  CAS  Google Scholar 

  31. Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., and Palsson, B. Ø. (2009) Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143.

    PubMed  CAS  Google Scholar 

  32. Jamshidi, N., Edwards, J. S., Fahland, T., Church, G. M., and Palsson, B. Ø. (2001) Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 17, 286–287.

    Article  PubMed  CAS  Google Scholar 

  33. Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19, 205–210.

    Article  PubMed  CAS  Google Scholar 

  34. Tomita, M., Hashimoto, K., Takahashi, K., et al. (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72–84.

    Article  PubMed  CAS  Google Scholar 

  35. Ohno, H., Naito, Y., Nakajima, H., and Tomita, M. (2008) Construction of a biological tissue model based on a single-cell model: a computer simulation of metabolic heterogeneity in the liver lobule. Artif. Life 14, 3–28.

    Article  PubMed  Google Scholar 

  36. Stephanopoulos, G., Aristidou, A. A., and Nielsen, J. (1998) Metabolic Engineering: Principles and Methodologies. Academics, San Diego, California, USA.

    Google Scholar 

  37. Iwatani, S., Yamada, Y., and Usuda, Y. (2008) Metabolic flux analysis in biotechnology processes. Biotechnol. Lett. 30, 791–799.

    Article  PubMed  CAS  Google Scholar 

  38. Schilling, C. H., Schuster, S., Palsson, B. Ø., and Heinrich, R. (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15, 296–303.

    Article  PubMed  CAS  Google Scholar 

  39. Schuster, S., Dandekar, T., and Fell, D. A. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60.

    Article  PubMed  CAS  Google Scholar 

  40. Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.

    Article  PubMed  CAS  Google Scholar 

  41. Papin, J. A., Price, N. D., Edwards, J. S., and Palsson, B. B. Ø. (2002) The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. 215, 67–82.

    Article  PubMed  CAS  Google Scholar 

  42. Papin, J. A, Price, N. D, and Palsson, B. Ø. (2002) Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res. 12, 1889–1900.

    Article  PubMed  CAS  Google Scholar 

  43. Price, N. D., Papin, J. A., and Palsson, B. Ø. (2002) Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. 12, 760–769.

    PubMed  CAS  Google Scholar 

  44. Wiback, S. J., and Palsson, B. Ø. (2002) Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83, 808–818.

    Article  PubMed  CAS  Google Scholar 

  45. Varma, A., and Palsson, B. Ø. (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731.

    PubMed  CAS  Google Scholar 

  46. Edwards, J. S., and Palsson, B. Ø. (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–5533.

    Article  PubMed  CAS  Google Scholar 

  47. Famili, I., Förster, J., Nielsen, J., and Palsson, B. Ø. (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134–13139.

    Article  PubMed  CAS  Google Scholar 

  48. van Gulik, W. M., and Heijnen, J. J. (1995) A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48, 681–698.

    Article  PubMed  Google Scholar 

  49. Ramakrishna, R., Edwards, J. S., McCulloch, A., and Palsson, B. Ø. (2001) Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R695–R704.

    PubMed  CAS  Google Scholar 

  50. Knorr, A. L., Jain, R., and Srivastava, R. (2007) Bayesian-based selection of metabolic objective functions. Bioinformatics 23, 351–357.

    Article  PubMed  CAS  Google Scholar 

  51. Ebenhoh, O., and Heinrich, R. (2001) Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull. Math. Biol. 63, 21–55.

    Article  PubMed  CAS  Google Scholar 

  52. Oliveira, A. P., Nielsen, J., and Förster, J. (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5, 39.

    Article  PubMed  Google Scholar 

  53. Nookaew, I., Jewett, M. C., Meechai, A., et al. (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst. Biol. 2, 71.

    Article  PubMed  Google Scholar 

  54. Segre, D., Vitkup, D., and Church, G. M. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117.

    Article  PubMed  CAS  Google Scholar 

  55. Shlomi, T., Berkman, O., and Ruppin, E. (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 102, 7695–7700.

    Article  PubMed  CAS  Google Scholar 

  56. Covert, M. W., Schilling, C. H., and Palsson, B. (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88.

    Article  PubMed  CAS  Google Scholar 

  57. Shlomi, T., Eisenberg, Y., Sharan, R., and Ruppin, E. (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101.

    Article  PubMed  Google Scholar 

  58. Covert, M. W., Xiao, N., Chen, T. J., and Karr, J. R. (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044–2050.

    Article  PubMed  CAS  Google Scholar 

  59. Lee, J. M., Gianchandani, E. P., Eddy, J. A., and Papin, J. A. (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4, e1000086.

    Article  PubMed  Google Scholar 

  60. Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. Ø., and Herrgård, M. J. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat. Protoc. 2, 727–738.

    Article  PubMed  CAS  Google Scholar 

  61. Hucka, M., Finney, A., Sauro, H. M., et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531.

    Article  PubMed  CAS  Google Scholar 

  62. Keating, S. M., Bornstein, B. J., Finney, A., and Hucka, M. (2006) SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics 22, 1275–1277.

    Article  PubMed  CAS  Google Scholar 

  63. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  PubMed  CAS  Google Scholar 

  64. Förster, J., Famili, I., Palsson, B. Ø., and Nielsen, J. (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 7, 193–202.

    Article  PubMed  Google Scholar 

  65. Kuepfer, L., Sauer, U., and Blank, L. M. (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430.

    Article  PubMed  CAS  Google Scholar 

  66. Duarte, N. C., Herrgård, M. J., and Palsson, B. Ø. (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309.

    Article  PubMed  CAS  Google Scholar 

  67. Duarte, N. C., Palsson, B. Ø., and Fu, P. (2004) Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics 5, 63.

    Article  PubMed  Google Scholar 

  68. Edwards, J. S., and Palsson, B. Ø. (2000) Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Progr. 16, 927–939.

    Article  CAS  Google Scholar 

  69. Varma, A., Boesch, B. W., and Palsson, B. Ø. (1993) Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73.

    Article  PubMed  CAS  Google Scholar 

  70. Vallino, J., and Stephanopoulos, G. (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41, 633–646.

    Article  PubMed  CAS  Google Scholar 

  71. Vanrolleghem, P. A., Jong-Gubbels, P., van Gulik, W. M., Pronk, J. T., van Dijken, J. P., and Heijnen, S. (1996) Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies. Biotechnol. Progr. 12, 434–448.

    Article  CAS  Google Scholar 

  72. Nissen, T. L., Schulze, U., Nielsen, J., and Villadsen, J. (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143, 203–218.

    Article  PubMed  CAS  Google Scholar 

  73. Jin, S., Ye, K., and Shimizu, K. (1997) Metabolic flux distribution in recombinant Saccharromyces cerevisiae during foreign protein production. J. Biotechnol. 54, 161–174.

    Article  PubMed  CAS  Google Scholar 

  74. Nissen, T. L., Kielland-Brandt, M. C., Nielsen, J., and Villadsen, J. (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Eng. 2, 69–77.

    Article  CAS  Google Scholar 

  75. Gombert, A. K., Moreira dos Santos, M., Christensen, B., and Nielsen, J. (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183, 1441–1451.

    Article  PubMed  CAS  Google Scholar 

  76. Jouhten, P., Rintala, E., Huuskonen, A., et al. (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113–1A. BMC Syst. Biol. 2, 60.

    Article  PubMed  Google Scholar 

  77. van Winden, W. A., van Dam, J. C., Ras, C., et al. (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113–7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. FEMS Yeast Res. 5, 559–568.

    Article  PubMed  Google Scholar 

  78. Frick, O., and Wittmann, C. (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb. Cell Fact. 4, 30.

    Article  PubMed  Google Scholar 

  79. Carlson, R., Fell, D., and Srienc, F. (2002) Metabolic Pathway analysis of a recombinat yeast for rational strain development. Biotechnol. Bioeng. 79, 121–134.

    Article  PubMed  CAS  Google Scholar 

  80. Förster, J., Gombert, K. A., and Nielsen, J. (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol. Bioeng. 79, 703–712.

    Article  PubMed  Google Scholar 

  81. Nookaew, I., Meechai, A., Thammarongtham, C., et al. (2007) Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks. Biotechnol. Bioeng. 97, 1535–1549.

    Article  PubMed  CAS  Google Scholar 

  82. Förster, J., Famili, I., Fu, P., Palsson, B. Ø., and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253.

    Article  PubMed  Google Scholar 

  83. Herrgård, M. J., Lee, B. S., Portnoy, V., and Palsson, B. Ø. (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635.

    Article  PubMed  Google Scholar 

  84. Mo, M. L., Palsson, B. Ø., and Heijnen, J. J. (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 1–17.

    Article  Google Scholar 

  85. Herrgård, M. J., Swainston, N., Dobson, P., et al. (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26, 1155–1160.

    Article  PubMed  Google Scholar 

  86. Asadollahi, M. A., Maury, J., Patil, K. R., Schalk, M., Clark, A., and Nielsen, J. (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 11, 328–334.

    Article  PubMed  CAS  Google Scholar 

  87. Åkesson, M., Förster, J., and Nielsen, J. (2004) Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6, 285–293.

    Article  PubMed  Google Scholar 

  88. Patil, K. R., Rocha, I., Förster, J., and Nielsen, J. (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6, 1–12.

    Article  Google Scholar 

  89. Patil, K. R., and Nielsen, J. (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 102, 2685–2689.

    Article  PubMed  CAS  Google Scholar 

  90. Cakır, T., Patil, K. R., Onsan, I., Ulgen, K. O., Kirdar, B., and Nielsen, J. (2006) Integration of metabolome data with metabolic networks reveals reporter reactions. Mol. Syst. Biol. 2, 1–11.

    Google Scholar 

  91. Oliveira, A. P., Patil, K. R., and Nielsen, J. (2008) Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst. Biol. 2, 17.

    Article  PubMed  Google Scholar 

  92. Pizarro, F. J., Jewett M. C., Nielsen, J., and Agosin, E. (2008) Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74, 6358–6368.

    Article  PubMed  CAS  Google Scholar 

  93. Vemuri, G. N., Eiteman, M. A., McEwen, J. E., Olsson, L., and Nielsen, J. (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 2402–2407.

    Article  PubMed  CAS  Google Scholar 

  94. Cimini. D., Patil, K. R., Schiraldi, C., and Nielsen J. (2009) Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3. BMC Syst. Biol. 3, 17.

    Article  PubMed  Google Scholar 

  95. Usaite, R., Patil, K. R., Grotkjaer, T., Nielsen, J., and Regenberg, B. (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Appl. Environ. Microbiol. 72, 6194–6203.

    Article  PubMed  CAS  Google Scholar 

  96. Blank L. M., Kuepfer L., and Sauer U. (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 6, R49.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Intawat Nookaew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Nookaew, I., Olivares-Hernández, R., Bhumiratana, S., Nielsen, J. (2011). Genome-Scale Metabolic Models of Saccharomyces cerevisiae . In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics