Skip to main content

Saccharomyces cerevisiae: Gene Annotation and Genome Variability, State of the Art Through Comparative Genomics

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

In the early days of the yeast genome sequencing project, gene annotation was in its infancy and suffered the problem of many false positive annotations as well as missed genes. The lack of other sequences for comparison also prevented the annotation of conserved, functional sequences that were not coding. We are now in an era of comparative genomics where many closely related as well as more distantly related genomes are available for direct sequence and synteny comparisons allowing for more probable predictions of genes and other functional sequences due to conservation. We also have a plethora of functional genomics data which helps inform gene annotation for previously uncharacterised open reading frames (ORFs)/genes. For Saccharomyces cerevisiae this has resulted in a continuous updating of the gene and functional sequence annotations in the reference genome helping it retain its position as the best characterized eukaryotic organism’s genome. A single reference genome for a species does not accurately describe the species and this is quite clear in the case of S. cerevisiae where the reference strain is not ideal for brewing or baking due to missing genes. Recent surveys of numerous isolates, from a variety of sources, using a variety of technologies have revealed a great deal of variation amongst isolates with genome sequence surveys providing information on novel genes, undetectable by other means. We now have a better understanding of the extant variation in S. cerevisiae as a species as well as some idea of how much we are missing from this understanding. As with gene annotation, comparative genomics enhances the discovery and description of genome variation and is providing us with the tools for understanding genome evolution, adaptation and selection, and underlying genetics of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisk, D. G., Ball, C. A., Dolinski, K., et al. (2006) Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 23, 857–865.

    Article  PubMed  CAS  Google Scholar 

  2. Christie, K. R., Hong, E. L., and Cherry, J. M. (2009) Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns. Trends Microbiol. 17, 286–294.

    Article  PubMed  CAS  Google Scholar 

  3. Hong, E. L., Balakrishnan, R., Dong, Q., et al. (2008) Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res. 36, D577–581.

    Article  PubMed  CAS  Google Scholar 

  4. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254.

    Article  PubMed  CAS  Google Scholar 

  5. Liti, G., and Louis, E. J. (2005) Yeast evolution and comparative genomics. Annu. Rev. Microbiol. 59, 135–153.

    Article  PubMed  CAS  Google Scholar 

  6. Cliften, P., Sudarsanam, P., Desikan, A., et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76.

    Article  PubMed  CAS  Google Scholar 

  7. Cliften, P. F., Hillier, L. W., Fulton, L., et al. (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res. 11, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  8. Wolfe, K. H., and Shields, D. C. (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713.

    Article  PubMed  CAS  Google Scholar 

  9. Byrne, K. P., and Wolfe, K. H. (2005) The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461.

    Article  PubMed  CAS  Google Scholar 

  10. Byrne, K. P., and Wolfe, K. H. (2006) Visualizing syntenic relationships among the hemiascomycetes with the yeast gene order browser. Nucleic Acids Res. 34, D452–455.

    Article  PubMed  CAS  Google Scholar 

  11. Fischer, G., James, S. A., Roberts, I. N., Oliver, S. G., and Louis, E. J. (2000) Chromosomal evolution in Saccharomyces. Nature 405, 451–454.

    Article  PubMed  CAS  Google Scholar 

  12. Souciet, J., Aigle, M., Artiguenave, F., et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett. 487, 3–12.

    Article  PubMed  Google Scholar 

  13. Fischer, G., Neuveglise, C., Durrens, P., Gaillardin, C., and Dujon, B. (2001) Evolution of gene order in the genomes of two related yeast species. Genome Res. 11, 2009–2019.

    Article  PubMed  CAS  Google Scholar 

  14. Liti, G., Carter, D. M., Moses, A. M., et al. (2009) Population genomics of domestic and wild yeasts. Nature 458, 337–341.

    Article  PubMed  CAS  Google Scholar 

  15. Novo, M., Bigey, F., Beyne, E., et al. (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl. Acad. Sci. USA 106, 16333–16338.

    Article  PubMed  CAS  Google Scholar 

  16. Wei, W., McCusker, J. H., Hyman, R. W., et al. (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc. Natl. Acad. Sci. USA 104, 12825–12830.

    Article  PubMed  CAS  Google Scholar 

  17. Liti, G., Peruffo, A., James, S. A., Roberts, I. N., and Louis, E. J. (2005) Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22, 177–192.

    Article  PubMed  CAS  Google Scholar 

  18. Buhler, C., Borde, V., and Lichten, M. (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol. 5, e324.

    Article  PubMed  Google Scholar 

  19. Klingberg, T. D., Lesnik, U., Arneborg, N., Raspor, P., and Jespersen, L. (2008) Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Res. 8, 631–640.

    Article  PubMed  CAS  Google Scholar 

  20. Lucena, B. T., Silva-Filho, E. A., Coimbra, M. R., Morais, J. O., Simoes, D. A., and Morais, M. A., Jr. (2007) Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions. Genet. Mol. Res. 6, 1072–1084.

    PubMed  CAS  Google Scholar 

  21. Schuller, D., Pereira, L., Alves, H., Cambon, B., Dequin, S., and Casal, M. (2007) Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments. Yeast 24, 625–636.

    Article  PubMed  CAS  Google Scholar 

  22. Valero, E., Cambon, B., Schuller, D., Casal, M., and Dequin, S. (2007) Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7, 317–329.

    Article  PubMed  CAS  Google Scholar 

  23. Althoff, D. M., Gitzendanner, M. A., and Segraves, K. A. (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst. Biol. 56, 477–484.

    Article  PubMed  CAS  Google Scholar 

  24. Lopandic, K., Gangl, H., Wallner, E., et al. (2007) Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res. 7, 953–965.

    Article  PubMed  CAS  Google Scholar 

  25. MacKenzie, D. A., Defernez, M., Dunn, W. B., et al. (2008) Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics. Yeast 25, 501–512.

    Article  PubMed  CAS  Google Scholar 

  26. Goddard, M. R., Anfang, N., Tang, R., Gardner, R. C., and Jun, C. (2009) A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ. Microbiol. 12, 63–73.

    Article  PubMed  Google Scholar 

  27. Legras, J. L., Merdinoglu, D., Cornuet, J. M., and Karst, F. (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16, 2091–2102.

    Article  PubMed  CAS  Google Scholar 

  28. Richards, K. D., Goddard, M. R., and Gardner, R. C. (2009) A database of microsatellite genotypes for Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 96, 355–359.

    Article  PubMed  CAS  Google Scholar 

  29. Bourgon, R., Mancera, E., Brozzi, A., Steinmetz, L. M., and Huber, W. (2009) Array-based genotyping in S. cerevisiae using semi-supervised clustering. Bioinformatics 25, 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  30. Dunn, B., Levine, R. P., and Sherlock, G. (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genom. 6, 53.

    Article  Google Scholar 

  31. Dunn, B., and Sherlock, G. (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res. 18, 1610–1623.

    Article  PubMed  CAS  Google Scholar 

  32. Gresham, D., Ruderfer, D. M., Pratt, S. C., et al. (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311, 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  33. Primig, M., Williams, R. M., Winzeler, E. A., et al. (2000) The core meiotic transcriptome in budding yeasts. Nat. Genet. 26, 415–423.

    Article  PubMed  CAS  Google Scholar 

  34. Schacherer, J., Ruderfer, D. M., Gresham, D., Dolinski, K., Botstein, D., and Kruglyak, L. (2007) Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One 2, e322.

    Article  PubMed  Google Scholar 

  35. Schacherer, J., Shapiro, J. A., Ruderfer, D. M., and Kruglyak, L. (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458, 342–345.

    Article  PubMed  CAS  Google Scholar 

  36. Aa, E., Townsend, J. P., Adams, R. I., Nielsen, K. M., and Taylor, J. W. (2006) Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res. 6, 702–715.

    Article  PubMed  Google Scholar 

  37. Fay, J. C., and Benavides, J. A. (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, 66–71.

    Article  PubMed  CAS  Google Scholar 

  38. Fay, J. C., and Benavides, J. A. (2005) Hypervariable noncoding sequences in Saccharomyces cerevisiae. Genetics 170, 1575–1587.

    Article  PubMed  CAS  Google Scholar 

  39. Liti, G., Barton, D. B., and Louis, E. J. (2006) Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174, 839–850.

    Article  PubMed  CAS  Google Scholar 

  40. Louis, E. J. (1998) Whole chromosome analysis. In Brown, A. J. P. and Tuite, M. F. (eds.), Methods in Microbiology 26: Yeast Gene Analysis, pp. 15–31. San Diego: Academic.

    Chapter  Google Scholar 

  41. James, S. A., O’Kelly, M. J., Carter, D. M., Davey, R. P., van Oudenaarden, A., and Roberts, I. N. (2009) Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Res. 19, 626–635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Louis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Louis, E. (2011). Saccharomyces cerevisiae: Gene Annotation and Genome Variability, State of the Art Through Comparative Genomics. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics