Skip to main content

Competition Experiments Coupled with High-Throughput Analyses for Functional Genomics Studies in Yeast

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Competition experiments are an effective way to provide a measurement of the fitness of yeast strains. The availability of the Saccharomyces cerevisiae yeast knock-out (YKO) deletion collection allows scientists to retrieve fitness data for the ~6,000 S. cerevisiae genes at the same time in a given environment. The molecular barcodes, characterizing each yeast mutant, serve as strain identifiers, which can be detected in a single microarray analysis. Competition experiments in continuous culture using chemically defined media allow a more specific discrimination of the strains based on their fitness profile. With this high-throughput approach, a series of genes that, when one allele is missing, result in either defective (haplo-insufficient) or favored (haplo-proficient) growth phenotype have been discovered, for each nutrient-limiting condition tested. While haplo-insufficient genes seemed to overlap largely across all the media used, the haplo-proficient ones seem to be more environment specific. For example, genes involved in the protein secretion pathway were highly haplo-insufficient in all the contexts, whereas most of the genes encoding for proteasome components showed a haplo-proficient phenotype specific to nitrogen-limiting conditions. In this chapter, the method used for implementation of competition experiments for high-throughput studies in yeast is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dykhuizen, D. E., and Hartl, D. L. (1983) Selection in chemostats. Microbiol. Rev. 47, 150–168.

    PubMed  CAS  Google Scholar 

  2. Baganz, F., Hayes, A., Farquhar, R., Butler, P. R., Gardner, D. C. J., and Oliver S. G. (1998) Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast 14, 1417–1427.

    Article  PubMed  CAS  Google Scholar 

  3. Colson, I., Delneri, D., and Oliver, S. G. (2004) Effects of reciprocal translocations on the fitness of Saccharomyces cerevisiae. EMBO Rep. 5, 392–398.

    Article  PubMed  CAS  Google Scholar 

  4. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  PubMed  CAS  Google Scholar 

  5. Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann M., and Davis, R. W. (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456.

    Article  PubMed  CAS  Google Scholar 

  6. Giaever, G., Chu, A. M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  PubMed  CAS  Google Scholar 

  7. Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., et al. (2002) Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404.

    PubMed  CAS  Google Scholar 

  8. Wright R., Parrish, M. L., Cadera, E., et al. (2003) Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis. Yeast 20, 881–892.

    Article  PubMed  CAS  Google Scholar 

  9. Zakrzewska, A., Boorsma, A., Delneri, D., Brul, S., Oliver, S. G., and Klis, F. M. (2007) Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan. Eukaryot. Cell 6, 600–608.

    Article  PubMed  CAS  Google Scholar 

  10. Giaever, G., Shoemaker, D. D., Jones, T. W., et al. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283.

    Article  PubMed  CAS  Google Scholar 

  11. Lum, P. Y., Armour, C. D., Stepaniants, S. B., et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137.

    Article  PubMed  CAS  Google Scholar 

  12. Bivi, N., Romanello, M., Harrison, R., et al. (2009) Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection. Genome Biol. 10, R93.

    Article  PubMed  Google Scholar 

  13. Deutschbauer, A. M., Jaramillo, D. F., Proctor, M., et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925.

    Article  PubMed  CAS  Google Scholar 

  14. Delneri, D., Hoyle, D. C., Gkargkas, K., et al. (2008) Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures. Nat. Genet. 40, 113–117.

    Article  PubMed  CAS  Google Scholar 

  15. Holland, S., Lodwig, E., Sideri, T., et al. (2007) Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biol. 8, R268.

    Article  PubMed  Google Scholar 

  16. Nislow, C., and Giaever, G. (2007) Chemical genomic tools for understanding gene function and drug action. Methods Microbiol. 36, 387–414.

    Article  CAS  Google Scholar 

  17. Pierce, S. E., Davis, R. W., Nislow, C., and Giaever, G. (2007) Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat. Protoc. 2, 2958–2974.

    Article  PubMed  CAS  Google Scholar 

  18. Pierce, S. E., Davis, R. W., Nislow, C., and Giaever, G. (2009) Chemogenomic approaches to elucidation of gene function and genetic pathways. Methods Mol. Biol. 548, 115–143.

    Article  PubMed  CAS  Google Scholar 

  19. Eason, R. G., Pourmand, N., Tongprasit, W., et al. (2004) Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains. Proc. Natl. Acad. Sci. USA 101, 11046–11051.

    Article  PubMed  CAS  Google Scholar 

  20. Pierce, S. E., Fung, E. L., Jaramillo, D. F., et al. (2006) A unique and universal molecular barcode array. Nat. Methods 3, 601–603.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, A. M., Heisler, L. E., Mellor, J., et al. (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res. 19, 1836–1842.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Delneri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Delneri, D. (2011). Competition Experiments Coupled with High-Throughput Analyses for Functional Genomics Studies in Yeast. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics