Skip to main content

Assessing Neuronal Bioenergetic Status

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 758))

Abstract

Drug discovery and therapeutic development for disorders of the central nervous system (CNS) represents one of the largest unmet markets in modern medicine. We have increasingly recognized that the lack of stringent assessment of mitochondrial function during the discovery process has resulted in drug recalls, black box warnings, and an urgent need to understand the metabolic liability of small molecules in neural systems. Given that the brain is the most energetically demanding organ, even modest perturbations in neuronal energetic pathways have been shown to impact growth, signaling, connectivity, and the restorative capacity of the CNS. In this work, we describe several tools to assess metabolic activity of primary neuronal cultures and neural cell lines using an acute model of injury induced by oxygen glucose deprivation. Methods include the measurement of total ATP and NADH, enzymatic assessment of lactate production by anaerobic respiration, as well as viability assays. We also present a modified screening method for assessing aerobic respiration of immortalized cell lines using galactose challenge.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q., and Han, J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis, Science 325, 332–336.

    Article  PubMed  CAS  Google Scholar 

  2. Dhar, S. S., and Wong-Riley, M. T. (2009) Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes, Journal of Neuroscience 29, 483–492.

    Article  PubMed  CAS  Google Scholar 

  3. Sonoda, J., Mehl, I. R., Chong, L.-W., Nofsinger, R. R., and Evans, R. M. (2007) PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis, Pro­ceedings of the National Academy of Sciences 104, 5223–5228.

    Article  CAS  Google Scholar 

  4. Rossi, D. J., Brady, J. D., and Mohr, C. (2007) Astrocyte metabolism and signaling during brain ischemia, Nature Neuroscience 10, 1377.

    Article  PubMed  CAS  Google Scholar 

  5. Erecinska, M., Cherian, S., and Silver, I. A. (2004) Energy metabolism in mammalian brain during development, Progress in Neurobiology 73, 397–445.

    Article  PubMed  CAS  Google Scholar 

  6. Erecinska, M., and Dagani, F. (1990) Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes, Journal of General Physiology 95, 591–616.

    Article  PubMed  CAS  Google Scholar 

  7. Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. (1999) Energy on demand, Science 283, 496–497.

    Article  PubMed  CAS  Google Scholar 

  8. Grunewald, T., and Beal, M. F. (1999) Bioenergetics in Huntington’s disease, Annals of the New York Academy of Sciences 893, 203–213.

    Article  PubMed  CAS  Google Scholar 

  9. Blandini, F., Braunewell, K. H., Manahan-Vaughan, D., Orzi, F., and Sarti, P. (2004) Neurodegeneration and energy metabolism: from chemistry to clinics, Cell Death & Differentiation 11, 479–484.

    Article  CAS  Google Scholar 

  10. Chan, P. H. (2005) Mitochondrial Dysfunction and Oxidative Stress as Determinants of Cell Death/Survival in Stroke, Annals of the New York Academy of Sciences 1042, 203–209.

    Article  PubMed  CAS  Google Scholar 

  11. Andersen, J. K. (2004) Oxidative stress in neurodegeneration: cause or consequence?, Nature Medicine 10 Suppl, S18–25.

    PubMed  Google Scholar 

  12. Lin, M. T., and Beal, M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature 443, 787–795.

    Article  PubMed  CAS  Google Scholar 

  13. Aschner, M., Erikson, K. M., Hernandez, E. H., and Tjalkens, R. (2009) Manganese and its role in Parkinson’s disease: from transport to neuropathology, Neuromolecular Medicine 11, 252–266.

    Article  PubMed  CAS  Google Scholar 

  14. Planel, E., Miyasaka, T., Launey, T., Chui, D.-H., Tanemura, K., Sato, S., Murayama, O., Ishiguro, K., Tatebayashi, Y., and Takashima, A. (2004) Alterations in Glucose Metabolism Induce Hypothermia Leading to Tau Hyper­phosphorylation through Differential Inhi­bition of Kinase and Phosphatase Activities: Implications for Alzheimer’s Disease, Journal of Neuroscience 24, 2401–2411.

    Article  PubMed  CAS  Google Scholar 

  15. Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., Cookson, M. R., and Greenamyre, J. T. (2002) An In Vitro Model of Parkinson’s Disease: Linking Mitochondrial Impairment to Altered alpha -Synuclein Metabolism and Oxidative Damage, Journal of Neuroscience. 22, 7006–7015.

    PubMed  CAS  Google Scholar 

  16. Dykens, J. A., and Will, Y. (2007) The significance of mitochondrial toxicity testing in drug development, Drug Discovery Today 12, 777–785.

    Article  PubMed  CAS  Google Scholar 

  17. Petrozzi, L., Ricci, G., Giglioli, N. J., Siciliano, G., and Mancuso, M. (2007) Mitochondria and neurodegeneration, Bioscience Reports 27, 87–104.

    Article  PubMed  CAS  Google Scholar 

  18. Nicotera, P., and Leist, M. (1997) Energy supply and the shape of death in neurons and lymphoid cells, Cell Death & Differentiation 4, 435–442.

    Article  CAS  Google Scholar 

  19. Nicholls, D. G., and Budd, S. L. (2000) Mitochondria and neuronal survival, Physiology Reviews 80, 315–360.

    CAS  Google Scholar 

  20. Hertz, L., Drejer, J., and Schousboe, A. (1988) Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures, Neurochemical Research 13, 605–610.

    Article  CAS  Google Scholar 

  21. Rodriguez-Enriquez, S., Juarez, O., Rodriguez-Zavala, J. S., and Moreno-Sanchez, R. (2001) Multisite control of the Crabtree effect in ascites hepatoma cells, European Journal of Biochemistry 268, 2512–2519.

    Article  PubMed  CAS  Google Scholar 

  22. Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G. J., Friedman, H., Friedman, A., Reardon, D., Herndon, J., Kinzler, K. W., Velculescu, V. E., Vogelstein, B., and Bigner, D. D. (2009) IDH1 and IDH2 mutations in gliomas, New England Journal of Medicine 360, 765–773.

    Article  PubMed  CAS  Google Scholar 

  23. Marroquin, L. D., Hynes, J., Dykens, J. A., Jamieson, J. D., and Will, Y. (2007) Circumventing the Crabtree effect: replacing medium glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants, Toxicological Sciences 97, 539–547.

    Article  PubMed  CAS  Google Scholar 

  24. Amacher, D. E. (2005) Drug-associated mitochondrial toxicity and its detection, Current Medicinal Chemistry 12, 1829–1839.

    Article  PubMed  CAS  Google Scholar 

  25. McKee, E. E., Ferguson, M., Bentley, A. T., and Marks, T. A. (2006) Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones, Antimicrobial Agents and Chemotherapy 50, 2042–2049.

    Article  PubMed  CAS  Google Scholar 

  26. Wallace, K. B., and Starkov, A. A. (2000) Mitochondrial targets of drug toxicity, Annual Review of Pharmacology and Toxicology 40, 353–388.

    Article  PubMed  CAS  Google Scholar 

  27. Crabtree, H. G. (1935) The differential effect of radium radiation on the carbohydrate metabolism of normal and tumour tissues irradiated at low temperature, Biochemical Journal 29, 2334–2343.

    PubMed  CAS  Google Scholar 

  28. Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C., and Pijnenborg, R. (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells, Human Reproduction 22, 1304–1309.

    Article  PubMed  CAS  Google Scholar 

  29. Klein, C. L., Wagner, M., Kirkpatrick, C. J., and Van Kooten, T. G. (1999) A new quantitative test method for cell proliferation based on detection of the Ki-67 protein, Journal of Materials Science-Materials in Medicine 11, 125–132.

    Article  Google Scholar 

  30. McLaughlin, B., and Levitt, P. (2000) Molecular basis of neurological disease., Hanley and Belfus Inc., Philadelphia.

    Google Scholar 

  31. Zhang, Y., and Lipton, P. (1999) Cytosolic Ca2+ Changes during In Vitro Ischemia in Rat Hippocampal Slices: Major Roles for Glutamate and Na+−Dependent Ca2+ Release from Mitochondria, Journal of Neuroscience 19, 3307–3315.

    PubMed  CAS  Google Scholar 

  32. Nicholls, D. G. (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures, Current Molecular Medicine 4, 149–177.

    Article  PubMed  CAS  Google Scholar 

  33. McLaughlin, B. A., Hartnett, K. A., Erhardt, J. A., Legos, J. J., White, R. F., Barone, F. C., and Aizenman, E. (2003) Caspase 3 activation is essential for neuroprotection in ischemic preconditioning., Proceedings of the National Academy of Sciences of the United States of America 100, 715–720.

    Article  PubMed  CAS  Google Scholar 

  34. Sinor, J. D., Du, S., Venneti, S., Blitzblau, R. C., Leszkiewicz, D. N., Rosenberg, P. A., and Aizenman, E. (2000) NMDA and Glutamate Evoke Excitotoxicity at Distinct Cellular Locations in Rat Cortical Neurons In Vitro, Journal of Neuroscience 20, 8831–8837.

    PubMed  CAS  Google Scholar 

  35. Czyzyk-Krzeska, M. F., Furnari, B. A., Lawson, E. E., and Millhorn, D. E. (1994) Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells, Journal of Biological Chemistry 269, 760–764.

    PubMed  CAS  Google Scholar 

  36. Maurer, B. J., Metelitsa, L. S., Seeger, R. C., Cabot, M. C., and Reynolds, C. P. (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines, Journal of National Cancer Institute 91, 1138–1146.

    Article  CAS  Google Scholar 

  37. Jin, K. L., Mao, X. O., and Greenberg, D. A. (2000) Vascular endothelial growth factor: direct neuroprotective effect in in Vitro ischemia, Proceedings of the National Academy of Sciences of the United States of America 97, 10242–10247.

    Article  PubMed  CAS  Google Scholar 

  38. Gerencser, A. A., Neilson, A., Choi, S. W., Edman, U., Yadava, N., Oh, R. J., Ferrick, D. A., Nicholls, D. G., and Brand, M. D. (2009) Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion, Analytical Chemistry.

    Google Scholar 

  39. Eklund, S. E., Snider, R. M., Wikswo, J., Baudenbacher, F., Prokop, A., and Cliffel, D. E. (2006) Multianalyte microphysiometry as a tool in metabolomics and systems biology, Journal of Electroanalytical Chemistry 587, 333.

    Article  CAS  Google Scholar 

  40. Chen, Y., Stevens, B., Chang, J., Milbrandt, J., Barres, B. A., and Hell, J. W. (2008) NS21: Re-defined and modified supplement B27 for neuronal cultures, Journal of Neuroscience Methods 171, 239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BethAnn McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zeiger, S.L.H., Stankowski, J.N., McLaughlin, B. (2011). Assessing Neuronal Bioenergetic Status. In: Costa, L., Giordano, G., Guizzetti, M. (eds) In Vitro Neurotoxicology. Methods in Molecular Biology, vol 758. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-170-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-170-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-169-7

  • Online ISBN: 978-1-61779-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics