Skip to main content

Electron Microscopic Imaging of Integrin

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 757))

Abstract

Rotary-shadowed samples often used for electron microscopy do not preserve native integrin conformations. Negatively stained integrins – or, more desirably, unstained integrins in a cryo-condition – are now being used with sophisticated imaging techniques. Additionally, a single-particle analysis (SPA) of integrins is advanced by the recent determination of several crystal structures of integrins. Nevertheless the conformational flexibility of integrins limits the ability of SPA to image physiologic conformations. To solve this problem, we apply electron tomography to purified integrin, thereby obtaining high-quality three-dimensional (3-D) images that fit well to the atomic structures. We have also taken typical SPA approaches to obtain a 3-D reconstruction of integrin, using conditions that favor the bent conformation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Frank, J. (2006) Three-dimensional electron microscopy of macromolecular assemblies, 2nd ed., Oxford University Press.

    Google Scholar 

  2. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli, J. Microsc. 141, RP1-2.

    Google Scholar 

  3. Dube, P., Herzog, F., Gieffers, C., Sander, B., Riedel, D., Muller, S. A., Engel, A., Peters, J. M., and Stark, H. (2005) Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C, Mol. Cell 20, 867–879.

    Article  PubMed  CAS  Google Scholar 

  4. Radermacher, M. (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series, J. Electron Microsc. Tech. 9, 359–394.

    Article  PubMed  CAS  Google Scholar 

  5. Shaikh, T. R., Gao, H., Baxter, W. T., Asturias, F. J., Boisset, N., Leith, A., and Frank, J. (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs, Nat. Protoc. 3, 1941–1974.

    Article  PubMed  CAS  Google Scholar 

  6. Martin, P., and Papayannopoulou, T. (1982) HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression, Science 216, 1233–1235.

    Article  PubMed  CAS  Google Scholar 

  7. Tabilio, A., Rosa, J. P., Testa, U., Kieffer, N., Nurden, A. T., Del Canizo, M. C., Breton-Gorius, J., and Vainchenker, W. (1984) Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL), EMBO J. 3, 453–459.

    PubMed  CAS  Google Scholar 

  8. Papayannopoulou, T., Nakamoto, B., Yokochi, T., Chait, A., and Kannagi, R. (1983) Human erythroleukemia cell line (HEL) undergoes a drastic macrophage-like shift with TPA, Blood 62, 832–845.

    PubMed  CAS  Google Scholar 

  9. Bray, P. F., Rosa, J. P., Lingappa, V. R., Kan, Y. W., McEver, R. P., and Shuman, M. A. (1986) Biogenesis of the platelet receptor for fibrinogen: evidence for separate precursors for glycoproteins IIb and IIIa, Proc. Natl. Acad. Sci. USA. 83, 1480–1484.

    Article  PubMed  CAS  Google Scholar 

  10. Yamada, T., Uyeda, A., Kidera, A., and Kikuchi, M. (1994) Functional analysis and modeling of a conformationally constrained Arg-Gly-Asp sequence inserted into human lysozyme, Biochemistry 33, 11678–11683.

    Article  PubMed  CAS  Google Scholar 

  11. Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E. (1986) Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-specific adhesion receptors, Science 231, 1559–1562.

    Article  PubMed  CAS  Google Scholar 

  12. Pfaff, M., Gohring, W., Brown, J. C., and Timpl, R. (1994) Binding of purified collagen receptors (alpha 1 beta 1, alpha 2 beta 1) and RGD-dependent integrins to laminins and laminin fragments, Eur. J. Biochem. 225, 975–984.

    Article  PubMed  CAS  Google Scholar 

  13. Takagi, J., Petre, B. M., Walz, T., and Springer, T. A. (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling, Cell 110, 599–511.

    Article  PubMed  CAS  Google Scholar 

  14. Chang, H. C., Bao, Z., Yao, Y., Tse, A. G., Goyarts, E. C., Madsen, M., Kawasaki, E., Brauer, P. P., Sacchettini, J. C., Nathenson, S. G., and et al. (1994) A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments, Proc. Natl. Acad. Sci. USA. 91, 11408–11412.

    Article  PubMed  CAS  Google Scholar 

  15. Takagi, J., Erickson, H. P., and Springer, T. A. (2001) C-terminal opening mimics ‘inside-out’ activation of integrin alpha5beta1, Nat. Struct. Biol. 8, 412–416.

    Article  PubMed  CAS  Google Scholar 

  16. Stanley, P. (1989) Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity, Mol. Cell. Biol. 9, 377–383.

    PubMed  CAS  Google Scholar 

  17. Rose, H. (1984) Infromation transfer in transmission electron microscopy, Ultramicroscopy 15, 173–192.

    Article  Google Scholar 

  18. Fitzgerald, L. A., Leung, B., and Phillips, D. R. (1985) A method for purifying the platelet membrane glycoprotein IIb-IIIa complex, Anal. Biochem. 151, 169–177.

    Article  PubMed  CAS  Google Scholar 

  19. Quispe, J., Damiano, J., Mick, S. E., Nackashi, D. P., Fellmann, D., Ajero, T. G., Carragher, B., and Potter, C. S. (2007) An improved holey carbon film for cryo-electron microscopy, Microsc. Microanal. 13, 365–371.

    Article  PubMed  CAS  Google Scholar 

  20. Iwasaki, K., Mitsuoka, K., Fujiyoshi, Y., Fujisawa, Y., Kikuchi, M., Sekiguchi, K., and Yamada, T. (2005) Electron tomography reveals diverse conformations of integrin alphaIIbbeta3 in the active state, J. Struct. Biol. 150, 259–267.

    Article  PubMed  CAS  Google Scholar 

  21. Hesse, J., Hebert, H., and Koeck, P. J. (2000) Evaluation of scanners and CCD cameras for high-resolution TEM of protein crystals and single particles, Microsc. Res. Tech. 49, 292–300.

    Article  PubMed  CAS  Google Scholar 

  22. Ludtke, S. J., Booth, C. R., Serysheva, I. I., Chen, D.-H., and Chiu, W. (2005) Single Particle Reconstructions at Subnanometer Resolution from a JEOL 2010 F and a 4 k  ×  4 k Gatan CCD Camera. Microsc. Microanal. 11(Suppl 2), 60–61.

    Google Scholar 

  23. Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996) Computer visualization of three-dimensional image data using IMOD, J. Struct. Biol. 116, 71–76.

    Article  PubMed  CAS  Google Scholar 

  24. Gilbert, P. (1972) Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theor. Biol. 36, 105–117.

    Article  PubMed  CAS  Google Scholar 

  25. van Heel, M., and Frank, J. (1981) Use of multivariate statistics in analysing the images of biological macromolecules, Ultramicroscopy 6, 187–194.

    PubMed  Google Scholar 

  26. Walz, J., Typke, D., Nitsch, M., Koster, A. J., Hegerl, R., and Baumeister, W. (1997) Electron Tomography of Single Ice-Embedded Macromolecules: Three-Dimensional Align-ment and Classification, J. Struct. Biol. 120, 387–395.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu, J., Luo, B. H., Xiao, T., Zhang, C., Nishida, N., and Springer, T. A. (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces, Mol. Cell 32, 849–861.

    Article  PubMed  CAS  Google Scholar 

  28. Xiao, T., Takagi, J., Coller, B. S., Wang, J. H., and Springer, T. A. (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics, Nature 432, 59–67.

    Article  PubMed  CAS  Google Scholar 

  29. Springer, T. A., Zhu, J., and Xiao, T. (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3, J. Cell Biol. 182, 791–800.

    Article  PubMed  CAS  Google Scholar 

  30. Carman, C. V., and Springer, T. A. (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized?, Curr. Opin Cell Biol. 15, 547–556.

    Article  PubMed  CAS  Google Scholar 

  31. Takagi, J., Strokovich, K., Springer, T. A., and Walz, T. (2003) Structure of integrin alpha5beta1 in complex with fibronectin, EMBO J. 22, 4607–4615.

    Article  PubMed  CAS  Google Scholar 

  32. Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnaout, M. A. (2001) Crystal structure of the extracellular segment of integrin alphaVbeta3, Science 294, 339–345.

    Article  PubMed  CAS  Google Scholar 

  33. Glaeser, R. M. (1999) Review: electron crystallography: present excitement, a nod to the past, anticipating the future, J. Struct. Biol. 128, 3–14.

    Article  PubMed  CAS  Google Scholar 

  34. Henderson, R. (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules, Q. Rev. Biophys. 28, 171–193.

    Article  PubMed  CAS  Google Scholar 

  35. Brink, J., Chiu, W., and Dougherty, M. (1992) Computer-controlled spot-scan imaging of crotoxin complex crystals with 400 keV electrons at near-atomic resolution, Ultramicroscopy 46, 229–240.

    Article  PubMed  CAS  Google Scholar 

  36. Smith, R., and Carragher, B. (2008) Software tools for molecular microscopy, J. Struct. Biol. 163, 224–228.

    Article  PubMed  CAS  Google Scholar 

  37. Klug, A., and Berger, J. E. (1964) An Optical Method for the Analysis of Periodicities in Electron Micrographs, and Some Observations on the Mechanism of Negative Staining, J. Mol. Biol. 10, 565–569.

    Article  PubMed  CAS  Google Scholar 

  38. Finch, J. T. (1964) Resolution of the Substructure of Tobacco Mosaic Virus in the Electron Microscope, J. Mol. Biol. 8, 872–874.

    Article  PubMed  CAS  Google Scholar 

  39. Kendall, A., McDonald, M., and Stubbs, G. (2007) Precise determination of the helical repeat of tobacco mosaic virus, Virology 369, 226–227.

    Article  PubMed  CAS  Google Scholar 

  40. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem. 25, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Junichi Takagi for critical reading of this manuscript and for his advice, and Emiko Mihara and Naoyuki Miyazaki for technical assistance. A part of this work was supported by “Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan” at the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University (Handai multifunctional Nano-Foundry) and the CREST, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Iwasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iwasaki, K. (2011). Electron Microscopic Imaging of Integrin. In: Shimaoka, M. (eds) Integrin and Cell Adhesion Molecules. Methods in Molecular Biology, vol 757. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-166-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-166-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-165-9

  • Online ISBN: 978-1-61779-166-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics