Skip to main content

Subcellular Renal Proximal Tubular Mitochondrial Toxicity with Tenofovir Treatment

  • Protocol
  • First Online:
Laser Capture Microdissection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 755))

Abstract

Nucleoside reverse transcriptase inhibitors (NRTIs) are drugs used in the treatment of HIV/AIDS. Despite the distinct benefits of NRTI-based therapies, tissue specific toxicity is a limiting factor. Although the mechanisms of these specific antiretroviral drug-related toxicities remain unclear, it has been hypothesized that as analogs to native nucleosides, NRTIs may potentially inhibit mammalian DNA polymerases, including mitochondrial DNA (mtDNA) polymerase γ. Tenofovir disoproxil fumarate (TDF) is a nucleotide analog of adenosine monophosphate and the only NRTI that is associated with renal disease. The inherent heterogeneity of kidney tissues could affect the outcome and interpretation of molecular studies to define the mechanism(s) of tenofovir tubular toxicity. Laser-capture microdissection (LCM) provided a specific, single-cell isolation of proximal tubules from fixed heterogeneous kidney tissues. LCM-captured renal proximal tubules from transgenic mice (TGs) showed decreased mtDNA abundance with tenofovir, demonstrating a subcellular specific mitochondrial toxicity of tenofovir in an AIDS model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis, W., Gonzalez, B., Chomyn, A., et al. (1992) Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J Clin Invest 89: 1354–1360.

    Article  CAS  Google Scholar 

  2. Lewis, W., Grupp, I. L., Grupp, G., et al. (2000) Cardiac dysfunction occurs in the HIV-1 transgenic mouse treated with zidovudine. Lab Invest 80: 187–197.

    Article  CAS  Google Scholar 

  3. Lewis, W. (2003) Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy. Prog Cardiovasc Dis 45: 305–318.

    Article  CAS  Google Scholar 

  4. Sulkowski, M. S., Mehta, S. H., Torbenson, M., et al. (2005) Hepatic steatosis and antiretroviral drug use among adults coinfected with HIV and hepatitis C virus. Aids 19: 585–592.

    Article  Google Scholar 

  5. Lund, K. C., Peterson, L. L. & Wallace, K. B. (2007) Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrob Agents Chemother 51: 2531–2539.

    Article  CAS  Google Scholar 

  6. Bruggeman, L. A., Thomson, M. M., Nelson, P. J., et al. (1994) Patterns of HIV-1 mRNA expression in transgenic mice are tissue- dependent. Virology 202: 940–948.

    Article  CAS  Google Scholar 

  7. Lewis, W., Haase, C. P., Raidel, S. M., et al. (2001) Combined antiretroviral therapy causes cardiomyopathy and elevates plasma lactate in transgenic AIDS mice. Laboratory Investigation 81: 1527–1536.

    Article  CAS  Google Scholar 

  8. Price, C. J., George, J. D., Marr, M. C., et al. (2006) Prenatal developmental toxicity evaluation of 2′,3′-dideoxyinosine (ddI) and 2′,3′-didehydro-3′-deoxythymidine (d4T) co-administered to Swiss Albino (CD-1) mice. Birth Defects Res B Dev Reprod Toxicol 77: 207–215.

    Article  CAS  Google Scholar 

  9. Fux, C. A., Christen, A., Zgraggen, S., et al. (2007) Effect of tenofovir on renal glomerular and tubular function. Aids 21: 1483–1485.

    Article  CAS  Google Scholar 

  10. Mocroft, A., Kirk, O., Gatell, J., et al. (2007) Chronic renal failure among HIV-1-infected patients. Aids 21: 1119–1127.

    Article  Google Scholar 

  11. Cote, H. C., Magil, A. B., Harris, M., et al. (2006) Exploring mitochondrial nephrotoxicity as a potential mechanism of kidney dysfunction among HIV-infected patients on highly active antiretroviral therapy. Antivir Ther 11: 79–86.

    CAS  Google Scholar 

  12. Vidal, F., Domingo, J. C., Guallar, J., et al. (2006) In vitro cytotoxicity and mitochondrial toxicity of tenofovir alone and in combination with other antiretrovirals in human renal proximal tubule cells. Antimicrob Agents Chemother 50: 3824–3832.

    Article  CAS  Google Scholar 

  13. Birkus, G., Hajek, M., Kramata, P., et al. (2002) Tenofovir diphosphate is a poor substrate and a weak inhibitor of rat DNA polymerases alpha, delta, and epsilon*. Antimicrob Agents Chemother 46: 1610–1613.

    Article  CAS  Google Scholar 

  14. Lewis, W. (2003) Mitochondrial dysfunction and nucleoside reverse transcriptase inhibitor therapy: experimental clarifications and persistent clinical questions. Antiviral Res 58: 189–197.

    Article  CAS  Google Scholar 

  15. Lewis, W., Copeland, W. C. & Day, B. (2001) Mitochondrial DNA depletion, oxidative stress and mutation: Mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Laboratory Investigation 81: 777–790.

    Article  CAS  Google Scholar 

  16. Lyseng-Williamson, K. A., Reynolds, N. A. & Plosker, G. L. (2005) Tenofovir disoproxil fumarate: a review of its use in the management of HIV infection. Drugs 65: 413–432.

    Article  CAS  Google Scholar 

  17. Izzedine, H., Isnard-Bagnis, C., Hulot, J. S., et al. (2004) Renal safety of tenofovir in HIV treatment-experienced patients. Aids 18: 1074–1076.

    Article  CAS  Google Scholar 

  18. Schooley, R. T., Ruane, P., Myers, R. A., et al. (2002) Tenofovir DF in antiretroviral-experienced patients: results from a 48-week, randomized, double-blind study. AIDS 16: 1257–1263.

    Article  CAS  Google Scholar 

  19. Padilla, S., Gutierrez, F., Masia, M., et al. (2005) Low frequency of renal function impairment during one-year of therapy with tenofovir-containing regimens in the real-world: a case-control study. AIDS Patient Care STDS 19: 421–424.

    Article  Google Scholar 

  20. Nelson, M. R., Katlama, C., Montaner, J. S., et al. (2007) The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. Aids 21: 1273–1281.

    Article  CAS  Google Scholar 

  21. Barrios, A., Garcia-Benayas, T., Gonzalez-Lahoz, J., et al. (2004) Tenofovir-related nephrotoxicity in HIV-infected patients. Aids 18: 960–963.

    Article  CAS  Google Scholar 

  22. Breton, G., Alexandre, M., Duval, X., et al. (2004) Tubulopathy consecutive to tenofovir-containing antiretroviral therapy in two patients infected with human immunodeficiency virus-1. Scand J Infect Dis 36: 527–528.

    Article  Google Scholar 

  23. James, C. W., Steinhaus, M. C., Szabo, S., et al. (2004) Tenofovir-related nephrotoxicity: case report and review of the literature. Pharmacotherapy 24: 415–418.

    Article  Google Scholar 

  24. Lochet, P., Peyriere, H., Le Moing, V., et al. (2005) [Assessment of renal abnormalities in 107 HIV patients treated with tenofovir]. Therapie 60: 175–181.

    Article  Google Scholar 

  25. Peyriere, H., Reynes, J., Rouanet, I., et al. (2004) Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases. J Acquir Immune Defic Syndr 35: 269–273.

    Article  Google Scholar 

  26. Zimmermann, A. E., Pizzoferrato, T., Bedford, J., et al. (2006) Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis 42: 283–290.

    Article  CAS  Google Scholar 

  27. Izzedine, H., Launay-Vacher, V., Isnard-Bagnis, C., et al. (2003) Drug-induced Fanconi’s syndrome. Am J Kidney Dis 41: 292–309.

    Article  CAS  Google Scholar 

  28. Dickie, P., Felser, J., Eckhaus, M., et al. (1991) HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185: 109–119.

    Article  CAS  Google Scholar 

  29. Kohler, J. J., Hosseini, S. H., Hoying-Brandt, A., et al. (2009) Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest 89: 513–519.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor William Lewis (WL) for his advice and support and Dianne Alexis in the Pathology Core Laboratory for assistance in the histological staining and tissue section protocols. This work was supported by R01 HL79867 to WL; JK is a recipient of K01 DK78513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Kohler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kohler, J.J., Hosseini, S.H. (2011). Subcellular Renal Proximal Tubular Mitochondrial Toxicity with Tenofovir Treatment. In: Murray, G. (eds) Laser Capture Microdissection. Methods in Molecular Biology, vol 755. Humana Press. https://doi.org/10.1007/978-1-61779-163-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-163-5_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-162-8

  • Online ISBN: 978-1-61779-163-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics