Advertisement

Using Quantitative BRET to Assess G Protein-Coupled Receptor Homo- and Heterodimerization

  • Lamia Achour
  • Maud Kamal
  • Ralf Jockers
  • Stefano MarulloEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 756)

Abstract

Over a period of 15 years the concept of G protein-coupled receptor (GPCR) dimerization moved from a challenging hypothesis to a scientific fact, which is now accepted by the vast majority of the scientists working in the field. However, several important issues remain debated such as the biological function of dimerization, or the actual complexity of the oligomeric organization. Because of its major potential implications in physiology and pharmacology, the question of GPCR heterodimerization (or hetero-oligomerization) is currently one of the most central. Several complementary experimental approaches are used to investigate these novel important aspects of GPCR biology. In this context, Bioluminescence Resonance Energy Transfer-based techniques are extremely powerful, provided that they are conducted with the appropriate (numerous) controls and correctly interpreted.

Key words

G protein-coupled receptor Resonance energy transfer Bioluminescence resonance energy transfer Oligomerization Endoplasmic reticulum Quality control Biosynthetic pathway Allostery Conformational change 

References

  1. 1.
    Xu, Y., Piston, D. W., and Johnson, C. H. (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96, 151–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Issad, T., and Jockers, R. (2006) Bioluminescence resonance energy transfer to monitor protein-protein interactions. Methods Mol Biol 332, 195–209.PubMedGoogle Scholar
  3. 3.
    Fung, J. J., Deupi, X., Pardo, L., Yao, X. J., Velez-Ruiz, G. A., Devree, B. T., Sunahara, R. K., and Kobilka, B. K. (2009) Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer. Embo J 28, 3315–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Chabre, M., and le Maire, M. (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44, 9395–403.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuszak, A. J., Pitchiaya, S., Anand, J. P., Mosberg, H. I., Walter, N. G., and Sunahara, R. K. (2009) Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem 284, 26732–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Bulenger, S., Marullo, S., and Bouvier, M. (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26, 131–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Achour, L., Labbe-Juillie, C., Scott, M. G. H., and Marullo, S. (2008) An escort for G Protein Coupled Receptors to find their path: implication for regulation of receptor density at the cell surface. Trends Pharmacol Sci 29, 528–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuxe, K., Marcellino, D., Leo, G., and Agnati, L. F. (2010) Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. Curr Opin Pharmacol 10, 14–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Bouvier, M. (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2, 274–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Ayoub, M. A., and Pfleger, K. D. G. (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10, in press.Google Scholar
  11. 11.
    Contento, R. L., Molon, B., Boularan, C., Pozzan, T., Manes, S., Marullo S, and Viola, A. (2008) CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci U S A 105, 10101–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Sohy, D., Yano, H., de Nadai, P., Urizar, E., Guillabert, A., Javitch, J. A., Parmentier, M., and Springael, J. Y. (2009) Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem 284, 31270–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Mercier, J. F., Salahpour, A., Angers, S., Breit, A., and Bouvier, M. (2002) Quantitative assessment of beta 1 and beta 2-adrenergic receptor homo and hetero-dimerization by bioluminescence resonance energy transfer. J Biol Chem 277, 44925–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Couturier, C., and Jockers, R. (2003) Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J Biol Chem 278, 26604–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Marullo, S., and Bouvier, M. (2007) Resonance Energy Transfer approaches in Molecular Pharmacology and beyond. Trends Pharmacol Sci 28, 362–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Ayoub, M. A., Levoye, A., Delagrange, P., and Jockers, R. (2004) Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared to MT2 homodimers. Mol Pharmacol 66, 312–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Loening, A. M., Fenn, T. D., Wu, A. M., and Gambhir, S. S. (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19, 391–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Nguyen, A. W., and Daugherty, P. S. (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23, 355–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Kamal, M., Marquez, M., Vauthier, V., Leloire, A., Froguel, P., Jockers, R., and Couturier, C. (2009) Improved donor/acceptor BRET couples for monitoring β-arrestin recruitment to G protein-coupled receptors. Biotechnol J 4, 1337–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lamia Achour
    • 1
  • Maud Kamal
    • 1
  • Ralf Jockers
    • 1
  • Stefano Marullo
    • 1
    Email author
  1. 1.Institut CochinUniversité Paris DescartesParisFrance

Personalised recommendations