Advertisement

Studying Ligand Efficacy at G Protein-Coupled Receptors Using FRET

  • Jean-Pierre VilardagaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 756)

Abstract

Drug “ligands” that bind G protein-coupled receptors (GPCRs) can either stimulate, fully (full agonists) or partially (partial agonists), or reduce (inverse agonists) basal receptor activity, by stabilizing different receptor conformations. The term “intrinsic efficacy” was introduced as a parameter to express the ability of a ligand to activate its receptor and to differentiate the varying signaling capacity of diverse ligands when they occupy the same fraction of a single receptor. Most methods use downstream biochemical and physiological responses as proxies of “intrinsic efficacy” but cannot measure it directly at the level of the receptor. Here I describe the development of a Förster resonance energy transfer (FRET) approach that permits the rigorous measurement of the intrinsic efficacy of a ligand directly at the level of a GPCR and independent from variation in experimental conditions. This approach also allows intrinsic efficacies of ligands to be linked with the effects of receptor polymorphisms or receptor heterodimerization.

Key words

G protein-coupled receptor α2A-Adrenergic receptor β1-Adrenergic receptor GPCR heterodimer GPCR polymorphisms Heterotrimeric G proteins Förster resonance energy transfer Ligand efficacy Conformational changes FlAsH labeling 

Notes

Acknowledgments

This work was supported by start-up funds from the Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine and by National Institutes of Health (NIH) grant DK087688. I thank Tim Feinstein for careful comments on this manuscript.

References

  1. 1.
    Kendall, R.T., and Luttrell, L.M. (2009) Diversity in arrestin function. Cell Mol Life Sci 66, 2953–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Neubig, R.R., Spedding, M., Kenakin, T., and Christopoulos, A. (2003) International union of pharmacology nomemclature and rug classification. Upadate on tgerms and symbols in quantitative pharmacology. Pharmcol Rev 55, 597–606.CrossRefGoogle Scholar
  3. 3.
    Ciccarelli, E., Vilardaga, J.-P., De Neef, P., DiPaolo, E., Waelbroeck, M., Bollen, A., and Robberecht, P. (1994) Properties of the VIP-PACAP type II receptor stably expressed in CHO cells. Regulatory Peptides 54, 397–407.PubMedCrossRefGoogle Scholar
  4. 4.
    Perrin, J. Théorie quantique des transferts d’activation entre molécules de même espèce. (1932) Cas des solutions fluorescentes. Ann Chim Phys 17, 283–313.Google Scholar
  5. 5.
    Förster, T. (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik (Leipzig) 2, 55–75.CrossRefGoogle Scholar
  6. 6.
    Vilardaga, J.-P., Bünemann, M., Feinstein, T.N., Lambert, N., Nikolaev, V.O., Engelhardt, S., Lohse, M.J., and Hoffmann, C. (2009) GPCR and G proteins: drug efficacy and activation in live cells. Mol Endocrinol 23, 590–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Balla, T. (2009) Green light to illuminate signal transduction events. Trends Cell Biol 19, 575–86PubMedCrossRefGoogle Scholar
  8. 8.
    Vilardaga, J.-P., Bünemann, M., Krasel, C., Castro, M., and Lohse, M.J. (2003) A millisecond activation switch for G protein-coupled receptors in living cells. Nat Biotechnology 21, 807–12.CrossRefGoogle Scholar
  9. 9.
    Hoffmann, C., Gaietta,. G., Bünemann, M., Adams, R.S., Oberforff-Maas, S., Behr, B., Vilardaga. J.-P., Tsien, R.Y., Ellisman, M.H., and Lohse, M.J. (2005) A FLASH-based approach to determine G protein-coupled receptor activation in living cells. Nature Methods 2, 171–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrandon, S., Feinstein, T.N., Castro, C., Bouley, R., Potts, J.T., Gardella, T.J., and Vilardaga, J.-P. (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5, 734–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Vilardaga, J.-P.,, Steinmeyer, R., Harms, G., and Lohse M.J. (2005) Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol 1, 25–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Nikolaev, O.V., Hoffmann, C., Bünemann, M., Lohse, M.J., and Vilardaga, J.-P., (2006) Molecular basis of partial agonism at the neurotransmitter α2A-adrenergic receptor and Gi-protein heterotrimer. J. Biol. Chem. 281, 24506–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Vilardaga, J.-P., Nikolaev, O.V., Lorentz, K., Ferrandon, S., Zhuang, Z., and Lohse, M.J., (2009) Direct inhibition of G protein signaling by cross-conformational switches between α2A-adrenergic and m-opioid receptors. Nat Chem Biol 4, 126–31.CrossRefGoogle Scholar
  14. 14.
    Rochais, F., Vilardaga, J.-P., Bünemann, M., Lohse, M.J., and Engelhardt, S,. Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. (2007) J Clin Invest 117, 229–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Xia, Z., and Liu, Y. (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. (2001) Biophys. J. 81, 2395–02.Google Scholar
  16. 16.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1997) Current Protocols in Molecular Biology. Wiley, New YorkGoogle Scholar
  17. 17.
    Hein, P., Frank, M., Hoffmann, C., Lohse, M.J, and Bünemann, M. (2005) Dynamic of receptor/G protein coupling in living cells. EMBO J 24, 4106–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory for GPCR Biology, Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh, School of MedicinePittsburghUSA

Personalised recommendations