Improving Drug Discovery with Contextual Assays and Cellular Systems Analysis

  • John K. WestwickEmail author
  • Jane E. Lamerdin
Part of the Methods in Molecular Biology book series (MIMB, volume 756)


Despite rapid growth in our knowledge of potential disease targets following completion of the first drafts of the human genome over 10 years ago, the success rate of new therapeutic discovery has been frustratingly low. In addition to the widely reported costs and single-digit success rate of the entire drug discovery and development process, it has recently been estimated that even the preliminary process of transitioning new targets to preclinical development succeeds in less than 3% of attempts [Vogel (ed.) Drug Discovery and Evaluation: Pharmacological Assays. 3rd ed. Springer, Berlin (2007)]. At these early stages of development, poor understanding of therapeutic mechanisms and lack of compound selectivity are often to blame for failed compounds. It is worth noting than the emerging class of nucleic acid-based therapeutics, including miRNA and RNAi, are likely to be even more prone to unexpected system-wide and off-target activities. For all therapeutic approaches, it is clear that discovery strategies permitting the assessment of drug targets in their native context are required. At the same time, these strategies need to retain the high throughput of current reductionist approaches to enable broad assessment of chemical space for small molecule and genetic therapeutics. We describe here an integrated system based on high-content cellular analysis combined with system-wide pathway interrogation. The platform can be applied to novel therapeutic target and drug candidate identification, and for providing detailed mechanistic and selectivity information at an early stage of development.

Key words

Signal transduction Network biology Chemical biology Systems biology Protein complex High-content assay Pathway analysis Drug discovery Drug profiling G-protein-coupled receptor Nuclear receptor Proteasome Protein-fragment complementation assay 


  1. 1.
  2. 2.
    Liddington, R. C. (2004) Structural basis of protein-protein interactions. Methods Mol Biol 261, 3–14.PubMedGoogle Scholar
  3. 3.
    Stumpf, M. P., Thorne, T., de Silva, E., Stewart, R., An, H. J., Lappe, M., and Wiuf, C. (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105, 6959–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Gerhart, J. and Kirschner, M.W. (1997) Cells, Embryos, and Evolution. Blackwell, Malden, MA.Google Scholar
  5. 5.
    Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., and Kinzler, K. W. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–6PubMedCrossRefGoogle Scholar
  6. 6.
    Jones, D. (2008) Pathways to cancer therapy. Nat Rev Drug Discov 7, 875–876.PubMedCrossRefGoogle Scholar
  7. 7.
    Albert, R. J. (2005) Scale-free networks in cell biology. J Cell Sci 118, 4947–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I., and Stefan, E. (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6, 569–82.PubMedCrossRefGoogle Scholar
  9. 9.
    MacDonald, M. L., and Westwick, J. K. (2007) Exploiting Network Biology to Improve Drug Discovery. In: Methods in Molecular Biology, Vol 356: High Content Screening. Lansing Taylor, Ed. Humana Press Inc., Totowa, NJ. 221–32;Google Scholar
  10. 10.
    Michnick, S. W., Macdonald, M. L., and Westwick, J. K. (2006) Chemical genetic strategies to delineate MAP kinase signaling pathways using protein-fragment complementation assays (PCA). Methods 40, 287–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Macdonald, M. L., Lamerdin, J., Owens, S., Keon, B. H., Bilter, G. K., Shang, Z., Huang, Z., Yu, H., Dias, J., Minami, T., Michnick, S. W., and Westwick, J. K. (2006) Identifying Off-Target Effects and Hidden Phenotypes of Drugs in Human Cells. Nat Chem Biol 2, 329–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Yu, H., West, M., Keon, B. H., Bilter, G. K., Owens, S., Lamerdin, J., and Westwick, J. K. (2003) Measuring drug action in the cellular context using protein-fragment complementation assays. Assay Drug Dev Technol 6, 811–22.CrossRefGoogle Scholar
  13. 13.
    Wells, J. A., and McClendon C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Westwick, J. K., and Michnick, S. W. (2005) Use of Protein-fragment Complementation Assays (PCA) in small GTPase research and drug discovery. Methods Enzymol 407, 388–401.CrossRefGoogle Scholar
  15. 15.
    Hopkins, A. L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4, 682–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Auld, D. S., Johnson, R. L., Zhang, Y. Q., Veith, H., Jadhav, A., Yasgar, A., Simeonov, A., Zheng, W., Martinez, E. D., Westwick, J. K., Austin, C. P., and Inglese, J. (2006) Fluorescent protein-based cellular assays analyzed by laser-scanning microplate cytometry in 1536-well plate format. Methods Enzymol 414, 566–89.PubMedCrossRefGoogle Scholar
  17. 17.
    Westhouse, R. A. (2010) Safety assessment considerations and strategies for targeted small molecule cancer therapeutics in drug discovery. Toxicol Pathol 38, 1658.PubMedCrossRefGoogle Scholar
  18. 18.
    Murray, B. W., Guo, C., Piraino, J., Westwick, J. K., Lamerdin, J., Dagostino, E., Knighton, D., Zhang, C., Loi, C-M., Zager, M., Kraynov, E., Bouzida, D., Martinez, R., Karlicek, S., Bergqvist, S., Kephardt, S., Marakovits, J., Zhang, J., and Smeal, T. (2010) Small-molecule p21-activated kinase-4 inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A. 107, 9446–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Vogel, H. G., ed. (2007) Drug Discovery and Evaluation: Pharmacological Assays. 3rd Ed. Springer.Google Scholar
  20. 20.
    Shaw, J. T. (2009) Naturally diverse: highlights in versatile synthetic methods enabling target- and diversity-oriented synthesis. Nat Prod Rep 1, 11–26.CrossRefGoogle Scholar
  21. 21.
    Fishman, M. A., and Porter, J. A. (2005) A new grammar for drug discovery. Nature 437, 491–493.PubMedCrossRefGoogle Scholar
  22. 22.
    Raimondi, C., Cortesi, E., Gianni, W., and Gazzaniga P. (2010) Cancer Stem Cells and Epithelial-Mesenchymal Transition: Revisiting Minimal Residual Disease. Curr Cancer Drug Targets. 10, 496–508.PubMedCrossRefGoogle Scholar
  23. 23.
    Sur, S., Pagliarini, R., Bunz, F., Rago, C., Diaz, L. A. Jr., Kinzler, K. W., Vogelstein, B., and Papadopoulos, N. (2009) A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 106, 3964–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Maurisse, R., De Semir, D., Emamekhoo, H., Bedayat, B., Abdolmohammadi, A., Parsi, H., and Gruenert, D. C. (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Odyssey Thera IncorporatedSan RamonUSA

Personalised recommendations