Skip to main content

Improving Drug Discovery with Contextual Assays and Cellular Systems Analysis

  • Protocol
  • First Online:
Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 756))

Abstract

Despite rapid growth in our knowledge of potential disease targets following completion of the first drafts of the human genome over 10 years ago, the success rate of new therapeutic discovery has been frustratingly low. In addition to the widely reported costs and single-digit success rate of the entire drug discovery and development process, it has recently been estimated that even the preliminary process of transitioning new targets to preclinical development succeeds in less than 3% of attempts [Vogel (ed.) Drug Discovery and Evaluation: Pharmacological Assays. 3rd ed. Springer, Berlin (2007)]. At these early stages of development, poor understanding of therapeutic mechanisms and lack of compound selectivity are often to blame for failed compounds. It is worth noting than the emerging class of nucleic acid-based therapeutics, including miRNA and RNAi, are likely to be even more prone to unexpected system-wide and off-target activities. For all therapeutic approaches, it is clear that discovery strategies permitting the assessment of drug targets in their native context are required. At the same time, these strategies need to retain the high throughput of current reductionist approaches to enable broad assessment of chemical space for small molecule and genetic therapeutics. We describe here an integrated system based on high-content cellular analysis combined with system-wide pathway interrogation. The platform can be applied to novel therapeutic target and drug candidate identification, and for providing detailed mechanistic and selectivity information at an early stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.thehealthcareblog.com/the_health_care_blog/2009/08/rx-for-medical-research.html

  2. Liddington, R. C. (2004) Structural basis of protein-protein interactions. Methods Mol Biol 261, 3–14.

    PubMed  CAS  Google Scholar 

  3. Stumpf, M. P., Thorne, T., de Silva, E., Stewart, R., An, H. J., Lappe, M., and Wiuf, C. (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105, 6959–64.

    Article  PubMed  CAS  Google Scholar 

  4. Gerhart, J. and Kirschner, M.W. (1997) Cells, Embryos, and Evolution. Blackwell, Malden, MA.

    Google Scholar 

  5. Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., and Kinzler, K. W. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–6

    Article  PubMed  CAS  Google Scholar 

  6. Jones, D. (2008) Pathways to cancer therapy. Nat Rev Drug Discov 7, 875–876.

    Article  PubMed  CAS  Google Scholar 

  7. Albert, R. J. (2005) Scale-free networks in cell biology. J Cell Sci 118, 4947–57.

    Article  PubMed  CAS  Google Scholar 

  8. Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I., and Stefan, E. (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6, 569–82.

    Article  PubMed  CAS  Google Scholar 

  9. MacDonald, M. L., and Westwick, J. K. (2007) Exploiting Network Biology to Improve Drug Discovery. In: Methods in Molecular Biology, Vol 356: High Content Screening. Lansing Taylor, Ed. Humana Press Inc., Totowa, NJ. 221–32;

    Google Scholar 

  10. Michnick, S. W., Macdonald, M. L., and Westwick, J. K. (2006) Chemical genetic strategies to delineate MAP kinase signaling pathways using protein-fragment complementation assays (PCA). Methods 40, 287–93.

    Article  PubMed  CAS  Google Scholar 

  11. Macdonald, M. L., Lamerdin, J., Owens, S., Keon, B. H., Bilter, G. K., Shang, Z., Huang, Z., Yu, H., Dias, J., Minami, T., Michnick, S. W., and Westwick, J. K. (2006) Identifying Off-Target Effects and Hidden Phenotypes of Drugs in Human Cells. Nat Chem Biol 2, 329–37.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, H., West, M., Keon, B. H., Bilter, G. K., Owens, S., Lamerdin, J., and Westwick, J. K. (2003) Measuring drug action in the cellular context using protein-fragment complementation assays. Assay Drug Dev Technol 6, 811–22.

    Article  Google Scholar 

  13. Wells, J. A., and McClendon C. L. (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–9.

    Article  PubMed  CAS  Google Scholar 

  14. Westwick, J. K., and Michnick, S. W. (2005) Use of Protein-fragment Complementation Assays (PCA) in small GTPase research and drug discovery. Methods Enzymol 407, 388–401.

    Article  Google Scholar 

  15. Hopkins, A. L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4, 682–90.

    Article  PubMed  CAS  Google Scholar 

  16. Auld, D. S., Johnson, R. L., Zhang, Y. Q., Veith, H., Jadhav, A., Yasgar, A., Simeonov, A., Zheng, W., Martinez, E. D., Westwick, J. K., Austin, C. P., and Inglese, J. (2006) Fluorescent protein-based cellular assays analyzed by laser-scanning microplate cytometry in 1536-well plate format. Methods Enzymol 414, 566–89.

    Article  PubMed  CAS  Google Scholar 

  17. Westhouse, R. A. (2010) Safety assessment considerations and strategies for targeted small molecule cancer therapeutics in drug discovery. Toxicol Pathol 38, 165–8.

    Article  PubMed  CAS  Google Scholar 

  18. Murray, B. W., Guo, C., Piraino, J., Westwick, J. K., Lamerdin, J., Dagostino, E., Knighton, D., Zhang, C., Loi, C-M., Zager, M., Kraynov, E., Bouzida, D., Martinez, R., Karlicek, S., Bergqvist, S., Kephardt, S., Marakovits, J., Zhang, J., and Smeal, T. (2010) Small-molecule p21-activated kinase-4 inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A. 107, 9446–51.

    Article  PubMed  CAS  Google Scholar 

  19. Vogel, H. G., ed. (2007) Drug Discovery and Evaluation: Pharmacological Assays. 3rd Ed. Springer.

    Google Scholar 

  20. Shaw, J. T. (2009) Naturally diverse: highlights in versatile synthetic methods enabling target- and diversity-oriented synthesis. Nat Prod Rep 1, 11–26.

    Article  Google Scholar 

  21. Fishman, M. A., and Porter, J. A. (2005) A new grammar for drug discovery. Nature 437, 491–493.

    Article  PubMed  CAS  Google Scholar 

  22. Raimondi, C., Cortesi, E., Gianni, W., and Gazzaniga P. (2010) Cancer Stem Cells and Epithelial-Mesenchymal Transition: Revisiting Minimal Residual Disease. Curr Cancer Drug Targets. 10, 496–508.

    Article  PubMed  CAS  Google Scholar 

  23. Sur, S., Pagliarini, R., Bunz, F., Rago, C., Diaz, L. A. Jr., Kinzler, K. W., Vogelstein, B., and Papadopoulos, N. (2009) A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 106, 3964–9.

    Article  PubMed  CAS  Google Scholar 

  24. Maurisse, R., De Semir, D., Emamekhoo, H., Bedayat, B., Abdolmohammadi, A., Parsi, H., and Gruenert, D. C. (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10, 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Westwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Westwick, J.K., Lamerdin, J.E. (2011). Improving Drug Discovery with Contextual Assays and Cellular Systems Analysis. In: Luttrell, L., Ferguson, S. (eds) Signal Transduction Protocols. Methods in Molecular Biology, vol 756. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-160-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-160-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-159-8

  • Online ISBN: 978-1-61779-160-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics