Protein-Fragment Complementation Assays for Large-Scale Analysis, Functional Dissection and Dynamic Studies of Protein–Protein Interactions in Living Cells

  • Stephen W. MichnickEmail author
  • Po Hien Ear
  • Christian Landry
  • Mohan K. Malleshaiah
  • Vincent Messier
Part of the Methods in Molecular Biology book series (MIMB, volume 756)


Protein-fragment Complementation Assays (PCAs) are a family of assays for detecting protein–protein interactions (PPIs) that have been developed to provide simple and direct ways to study PPIs in any living cell, multicellular organism, or in vitro. PCAs can be used to detect PPI between proteins of any molecular weight and expressed at their endogenous levels. Proteins are expressed in their appropriate cellular compartments and can undergo any posttranslational modification or degradation that, barring effects of the PCA fragment fusion, they would normally undergo. Assays can be performed in any cell type or model organism that can be transformed or transfected with gene expression DNA constructs. Here we focus on recent applications of PCA in the budding yeast, Saccharomyces cerevisiae, that cover the gamut of applications one could envision for studying any aspect of PPIs. We present detailed protocols for large-scale analysis of PPIs with the survival-selection dihydrofolate reductase (DHFR), reporter PCA, and a new PCA based on a yeast cytosine deaminase reporter that allows for both survival and death selection. This PCA should prove a powerful way to dissect PPIs. We then present methods to study spatial localization and dynamics of PPIs based on fluorescent protein reporter PCAs.

Key words

Protein-fragment complementation assay Protein–protein interactions Dihydrofolate reductase Cytosine deaminase Green fluorescent protein Luciferase reporter 


  1. 1.
    Michnick, S. W., Remy, I., Campbell-Valois, F. X., Vallée-Bélisle, A., and Pelletier, J. N. (2000). Detection of protein–protein interactions by protein fragment complementation strategies. Methods Enzymol 328, 208–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Pelletier, J. N., Campbell-Valois, F. X., and Michnick, S. W. (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci U S A 95, 12141–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Pelletier, J. N., and Michnick, S. W. (1997) A Protein Complementation Assay for Detection of Protein–Protein Interactions in vivo. Protein Engineering 10, 89.CrossRefGoogle Scholar
  4. 4.
    Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I., and Stefan, E. (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6, 569–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Remy, I., and Michnick, S. W. (1999) Clonal Selection and In Vivo Quantitation of Protein Interactions with Protein Fragment Complementation Assays. Proc Natl Acad Sci U S A 96, 5394–5399.PubMedCrossRefGoogle Scholar
  6. 6.
    Tarassov, K., Messier, V., Landry, C. R., Radinovic, S., Serna Molina, M. M., Shames, I., Malitskaya, Y., Vogel, J., Bussey, H., and Michnick, S. W. (2008) An in vivo map of the yeast protein interactome. Science 320, 1465–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell-Valois, F. X., Tarassov, K., and Michnick, S. W. (2005) Massive sequence perturbation of a small protein. Proc Natl Acad Sci U S A 102, 14988–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Ear, P. H., and Michnick, S. W. (2009) A general life-death selection strategy for dissecting protein functions. Nat Methods 6, 813–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Remy, I., and Michnick, S. W. (2001) Visualization of biochemical networks in living cells. Proc Natl Acad Sci U S A 98, 7678–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Pelletier, J. N., Arndt, K. M., Plückthun, A., and Michnick, S. W. (1999) An in vivo library-versus-library selection of optimized protein–protein interactions. Nat Biotechnol 17, 683–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Subramaniam, R., Desveaux, D., Spickler, C., Michnick, S. W., and Brisson, N. (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19, 769–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Ercikan-Abali, E. A., Waltham, M. C., Dicker, A. P., Schweitzer, B. I., Gritsman, H., Banerjee, D., and Bertino, J. R. (1996) Variants of human dihydrofolate reductase with substitutions at leucine-22: effect on catalytic and inhibitor binding properties. Mol Pharmacol 49, 430–7.PubMedGoogle Scholar
  13. 13.
    Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea, E. K., and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425, 737–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghosh, I., Hamilton, A. D., and Regan, L. (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122, 5658–9.CrossRefGoogle Scholar
  15. 15.
    Magliery, T. J., Wilson, C. G., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., Regan, L. (2005) Detecting protein–protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127, 146–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson, C. G., Magliery, T. J., and Regan, L. (2004) Detecting protein–protein interactions with GFP-fragment reassembly. Nat Methods 1, 255–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Cabantous, S., Terwilliger, T. C., and Waldo, G. S. (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23, 102–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu, C. D., Chinenov, Y., and Kerppola, T. K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9, 789–98.PubMedCrossRefGoogle Scholar
  19. 19.
    MacDonald, M. L., Lamerdin, J., Owens, S., Keon, B. H., Bilter, G. K., Shang, Z., Huang, Z., Yu, H., Dias, J., Minami, T., Michnick, S. W., and Westwick, J. K. (2006) Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2, 329–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Nyfeler, B., Michnick, S. W., and Hauri, H. P. (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A 102, 6350–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Remy, I. and Michnick, S. W. (2004) Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol 24, 1493–504.PubMedCrossRefGoogle Scholar
  22. 22.
    Remy, I., Montmarquette, A., and Michnick, S. W. (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol 6, 358–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Remy, I., and Michnick, S. W. (2006) A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3, 977–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Stefan, E., Aquin, S., Berger, N., Landry, C. R., Nyfeler, B., Bouvier, M., and Michnick, S. W. (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci U S A 104, 16916–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Benton, R., Sachse, S., Michnick, S. W., and Vosshall, L. B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4, e20.PubMedCrossRefGoogle Scholar
  26. 26.
    Ding, Z., Liang, J., Lu, Y., Yu, Q., Songyang, Z., Lin, S. Y., and Mills, G. B. (2006) A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci U S A 103, 15014–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Metodiev, M. V., Matheos, D., Rose, M. D., and Stone, D. E. (2002) Regulation of MAPK function by direct interaction with the mating-specific Galpha in yeast. Science 296, 1483–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi, K. Y., Satterberg, B., Lyons, D. M., and Elion, E. A. (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512.PubMedCrossRefGoogle Scholar
  29. 29.
    Chou, S., Huang, L., and Liu, H. (2004) Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell 119, 981–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Manderson, E. N., Malleshaiah, M., and Michnick, S. W. (2008) A Novel Genetic Screen Implicates Elm1 in the Inactivation of the Yeast Transcription Factor SBF. PLoS ONE 3, e1500.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20, 87–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., and Breakefield, X. O. (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11, 435–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K. D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Güldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kötter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C. Y., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Sheff, M. A. and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Collins, S. R., Schuldiner, M., Krogan, N. J., and Weissman, J. S. (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol 7, R63.PubMedCrossRefGoogle Scholar
  37. 37.
    Linggi, B. and Carpenter, G. (2006) ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 16, 649–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Memarian, N., Jessulat, M., Alirezaie, J., Mir-Rashed, N., Xu, J., Zareie, M., Smith, M., and Golshani, A. (2007) Colony size measurement of the yeast gene deletion strains for functional genomics. BMC Bioinformatics 8, 117.PubMedCrossRefGoogle Scholar
  39. 39.
    Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R., and Church, G. M. (2005) A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 1, 2005.0001.Google Scholar
  40. 40.
    Collins, S. R., Kemmeren, P., Zhao, X. C., Greenblatt, J. F., Spencer, F., Holstege, F. C., Weissman, J. S., and Krogan, N. J. (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6, 439–50.PubMedGoogle Scholar
  41. 41.
    Jansen, R., and Gerstein, M. (2004) Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Curr Opin Microbiol 7, 535–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Levy, E. D., Landry, C. R., and Michnick, S. W. (2009) How perfect can protein interactomes be? Sci Signal 2, pe11.Google Scholar
  43. 43.
    Mumberg, D., Müller, R., and Funk, M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stephen W. Michnick
    • 1
    Email author
  • Po Hien Ear
    • 1
  • Christian Landry
    • 1
  • Mohan K. Malleshaiah
    • 1
  • Vincent Messier
    • 1
  1. 1.Département de BiochimieUniversité de MontréalMontréalCanada

Personalised recommendations