Advertisement

Imaging-Based Approaches to Understanding G Protein-Coupled Receptor Signalling Complexes

  • Darlaine Pétrin
  • Terence E. HébertEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 756)

Abstract

In the last 10 years, imaging assays based on resonance energy transfer (RET) and protein fragment complementation have made it possible to study interactions between components of G protein-coupled receptor (GPCR) signalling complexes in living cells under physiological conditions. Here, we consider the history of such approaches, the current tools available and how they have changed our understanding of GPCR signalling. We also discuss some theoretical and methodological issues important when combining the different types of assay.

Key words

G protein-coupled receptor Bioluminescence resonance energy transfer G protein Protein–protein interaction assays Protein fragment complementation assays 

Notes

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research to T.E.H (MOP-36279) as well as the CIHR Team in GPCR Allosteric Regulation (CTiGAR). T.E.H. is a Chercheur National of the Fonds de la Recherche en Santé du Québec (FRSQ). We thank Vic Rebois (NIH) and the Hébert lab for helpful discussions.

References

  1. 1.
    Pugh, E. N., Jr., and Lamb, T. D. (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141, 111–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Hébert, T. E., and Bouvier, M. (1998) Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem Cell Biol 76, 1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Hébert, T. E., Moffett, S., Morello, J. P., Loisel, T. P., Bichet, D. G., Barret, C., and Bouvier, M. (1996) A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation J Biol Chem 271, 16384–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Prinster, S. C., Hague, C., and Hall, R. A. (2005) Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57, 289–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Bulenger, S., Marullo, S., and Bouvier, M. (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26, 131–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Milligan, G. (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158, 5–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Ng, G. Y., Clark, J., Coulombe, N., Ethier, N., Hébert, T. E., Sullivan, R., Kargman, S., Chateauneuf, A., Tsukamoto, N., McDonald, T., Whiting, P., Mezey, E., Johnson, M. P., Liu, Q., Kolakowski, L. F., Jr., Evans, J. F., Bonner, T. I., and O’Neill, G. P. (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 274, 7607–10.PubMedCrossRefGoogle Scholar
  8. 8.
    White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshall, F. H. (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396, 679–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W. J., Johnson, M., Gunwaldsen, C., Huang, L. Y., Tang, C., Shen, Q., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., and Gerald, C. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., and Bettler, B. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Hébert, T. E., Loisel, T. P., Adam, L., Ethier, N., Onge, S. S., and Bouvier, M. (1998) Functional rescue of a constitutively desensitized β2AR through receptor dimerization. Biochem J 330, 287–93.PubMedGoogle Scholar
  12. 12.
    Bohme, I., and Beck-Sickinger, A. G. (2009) Illuminating the life of GPCRs. Cell Commun Signal 7, 16.PubMedCrossRefGoogle Scholar
  13. 13.
    Rocheville, M., Lange, D. C., Kumar, U., Sasi, R., Patel, R. C., and Patel, Y. C. (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275, 7862–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., and Patel, Y. C. (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Overton, M. C., and Blumer, K. J. (2000) G-protein-coupled receptors function as oligomers in vivo. Curr Biol 10, 341–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M., and Bouvier, M. (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97, 3684–9.PubMedGoogle Scholar
  17. 17.
    Vilardaga, J. P., Bunemann, M., Feinstein, T. N., Lambert, N., Nikolaev, V. O., Engelhardt, S., Lohse, M. J., and Hoffmann, C. (2009) GPCR and G proteins: drug efficacy and activation in live cells. Mol Endocrinol 23, 590–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Lohse, M. J., Hoffmann, C., Nikolaev, V. O., Vilardaga, J. P., and Bunemann, M. (2007) Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells. Adv Protein Chem 74, 167–88.PubMedCrossRefGoogle Scholar
  19. 19.
    Lohse, M. J., Bunemann, M., Hoffmann, C., Vilardaga, J. P., and Nikolaev, V. O. (2007) Monitoring receptor signaling by intramolecular FRET. Curr Opin Pharmacol 7, 547–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Nikolaev, V. O., and Lohse, M. J. (2006) Monitoring of cAMP synthesis and degradation in living cells. Physiology (Bethesda) 21, 86–92.CrossRefGoogle Scholar
  21. 21.
    Elster, L., Elling, C., and Heding, A. (2007) Bioluminescence resonance energy transfer as a screening assay: Focus on partial and inverse agonism. J Biomol Screen 12, 41–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Frommer, W. B., Davidson, M. W., and Campbell, R. E. (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38, 2833–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferrandon, S., Feinstein, T. N., Castro, M., Wang, B., Bouley, R., Potts, J. T., Gardella, T. J., and Vilardaga, J. P. (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5, 734–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Lohse, M. J., Hein, P., Hoffmann, C., Nikolaev, V. O., Vilardaga, J. P., and Bunemann, M. (2008) Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 153 Suppl 1, S125-32.PubMedGoogle Scholar
  25. 25.
    Zaks-Zilberman, M., Harrington, A. E., Ishino, T., and Chaiken, I. M. (2008) Interleukin-5 receptor subunit oligomerization and rearrangement revealed by fluorescence resonance energy transfer imaging. J Biol Chem 283, 13398–406.PubMedCrossRefGoogle Scholar
  26. 26.
    Tan, P. K., Wang, J., Littler, P. L., Wong, K. K., Sweetnam, T. A., Keefe, W., Nash, N. R., Reding, E. C., Piu, F., Brann, M. R., and Schiffer, H. H. (2007) Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer. Mol Pharmacol 72, 1440–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Schiffer, H. H., Reding, E. C., Fuhs, S. R., Lu, Q., Piu, F., Wong, S., Littler, P. L., Weiner, D. M., Keefe, W., Tan, P. K., Nash, N. R., Knapp, A. E., Olsson, R., and Brann, M. R. (2007) Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer. Mol Pharmacol 71, 508–18.PubMedCrossRefGoogle Scholar
  28. 28.
    De Vries, L., Finana, F., Cachoux, F., Vacher, B., Sokoloff, P., and Cussac, D. (2010) Cellular BRET assay suggests a conformational rearrangement of preformed TrkB/Shc complexes following BDNF-dependent ­activation. Cell Signal 22, 158–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Bal, M., Zhang, J., Zaika, O., Hernandez, C. C., and Shapiro, M. S. (2008) Homomeric and heteromeric assembly of KCNQ (Kv7) K  +  channels assayed by total internal reflection fluorescence/fluorescence resonance energy transfer and patch clamp analysis. J Biol Chem 283, 30668–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Whitaker, G. M., Angoli, D., Nazzari, H., Shigemoto, R., and Accili, E. A. (2007) HCN2 and HCN4 isoforms self-assemble and co-assemble with equal preference to form functional pacemaker channels. J Biol Chem 282, 22900–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Pfleger, K. D. (2009) Analysis of protein–protein interactions using bioluminescence resonance energy transfer. Methods Mol Biol 574, 173–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Ayoub, M. A., and Pfleger, K. D. (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10, 44–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Bacart, J., Corbel, C., Jockers, R., Bach, S., and Couturier, C. (2008) The BRET technology and its application to screening assays. Biotechnol J 3, 311–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Prinz, A., Reither, G., Diskar, M., and Schultz, C. (2008) Fluorescence and bioluminescence procedures for functional proteomics. Proteomics 8, 1179–96.PubMedCrossRefGoogle Scholar
  35. 35.
    Marullo, S., and Bouvier, M. (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28, 362–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Pfleger, K. D., and Eidne, K. A. (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3, 165–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Hébert, T. E., Galés, C., and Rebois, R. V. (2006) Detecting and imaging protein–protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques. Cell Biochem Biophys 45, 85–109.PubMedCrossRefGoogle Scholar
  38. 38.
    Li, I. T., Pham, E., and Truong, K. (2006) Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett 28, 1971–82.PubMedCrossRefGoogle Scholar
  39. 39.
    Kenworthy, A. K., and Edidin, M. (1999) Imaging fluorescence resonance energy transfer as probe of membrane organization and molecular associations of GPI-anchored proteins. Methods Mol Biol 116, 37–49.PubMedGoogle Scholar
  40. 40.
    Kenworthy, A. K., and Edidin, M. (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol 142, 69–84.PubMedCrossRefGoogle Scholar
  41. 41.
    Mercier, J. F., Salahpour, A., Angers, S., Breit, A., and Bouvier, M. (2002) Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277, 44925–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Galés, C., Van Durm, J. J., Schaak, S., Pontier, S., Percherancier, Y., Audet, M., Paris, H., and Bouvier, M. (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 13, 778–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Hamdan, F. F., Rochdi, M. D., Breton, B., Fessart, D., Michaud, D. E., Charest, P. G., Laporte, S. A., and Bouvier, M. (2007) Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between β-arrestins and AP-2. J Biol Chem 282, 29089–100.PubMedCrossRefGoogle Scholar
  44. 44.
    Pétrin, D., Robitaille, M., and Hébert, T. E. (2010) Real-time BRET assays to measure G protein/effector interactions. Methods in Molecular Biology see Chapter 2.Google Scholar
  45. 45.
    Salahpour, A., Angers, S., Mercier, J. F., Lagace, M., Marullo, S., and Bouvier, M. (2004) Homodimerization of the β2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279, 33390–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Dupré, D. J., Robitaille, M., Ethier, N., Villeneuve, L. R., Mamarbachi, A. M., and Hébert, T. E. (2006) Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking. J Biol Chem 281, 34561–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Lopez-Gimenez, J. F., Canals, M., Pediani, J. D., and Milligan, G. (2007) The α1B-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71, 1015–29.PubMedCrossRefGoogle Scholar
  48. 48.
    Milligan, G. (2010) The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol 10, 23–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Berchiche, Y. A., Chow, K. Y., Lagane, B., Leduc, M., Percherancier, Y., Fujii, N., Tamamura, H., Bachelerie, F., and Heveker, N. (2007) Direct assessment of CXCR4 mutant conformations reveals complex link between receptor structure and G(α)(i) activation. J Biol Chem 282, 5111–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Brea, J., Castro, M., Giraldo, J., Lopez-Gimenez, J. F., Padin, J. F., Quintian, F., Cadavid, M. I., Vilaro, M. T., Mengod, G., Berg, K. A., Clarke, W. P., Vilardaga, J. P., Milligan, G., and Loza, M. I. (2009) Evidence for distinct antagonist-revealed functional states of 5-hydroxytryptamine(2A) receptor homodimers. Mol Pharmacol 75, 1380–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Harikumar, K. G., Pinon, D. I., and Miller, L. J. (2007) Transmembrane segment IV contributes a functionally important interface for oligomerization of the Class II G protein-coupled secretin receptor. J Biol Chem 282, 30363–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Kobayashi, H., Ogawa, K., Yao, R., Lichtarge, O., and Bouvier, M. (2009) Functional rescue of β-adrenoceptor dimerization and trafficking by pharmacological chaperones. Traffic 10, 1019–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Ayoub, M. A., Couturier, C., Lucas-Meunier, E., Angers, S., Fossier, P., Bouvier, M., and Jockers, R. (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277, 21522–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Vilardaga, J. P., Steinmeyer, R., Harms, G. S., and Lohse, M. J. (2005) Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol 1, 25–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Nikolaev, V. O., Hoffmann, C., Bunemann, M., Lohse, M. J., and Vilardaga, J. P. (2006) Molecular basis of partial agonism at the neurotransmitter α2A-adrenergic receptor and Gi-protein heterotrimer. J Biol Chem 281, 24506–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Zurn, A., Zabel, U., Vilardaga, J. P., Schindelin, H., Lohse, M. J., and Hoffmann, C. (2009) Fluorescence resonance energy transfer analysis of a α2A-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol Pharmacol 75, 534–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Rosenbaum, D. M., Rasmussen, S. G., and Kobilka, B. K. (2009) The structure and function of G-protein-coupled receptors. Nature 459, 356–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Mustafi, D., and Palczewski, K. (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75, 1–12.PubMedCrossRefGoogle Scholar
  59. 59.
    Audet, M., and Bouvier, M. (2008) Insights into signaling from the β2-adrenergic receptor structure. Nat Chem Biol 4, 397–403.PubMedCrossRefGoogle Scholar
  60. 60.
    Galés, C., Rebois, R. V., Hogue, M., Trieu, P., Breit, A., Hébert, T. E., and Bouvier, M. (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2, 177–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Audet, N., Galés, C., Archer-Lahlou, E., Vallieres, M., Schiller, P. W., Bouvier, M., and Pineyro, G. (2008) Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. J Biol Chem 283, 15078–88.PubMedCrossRefGoogle Scholar
  62. 62.
    Rebois, R. V., Robitaille, M., Gales, C., Dupre, D. J., Baragli, A., Trieu, P., Ethier, N., Bouvier, M., and Hébert, T. E. (2006) Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 119, 2807–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Digby, G. J., Lober, R. M., Sethi, P. R., and Lambert, N. A. (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci U S A 103, 17789–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Digby, G. J., Sethi, P. R., and Lambert, N. A. (2008) Differential dissociation of G protein heterotrimers. J Physiol 586, 3325–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Lambert, N. A. (2008) Dissociation of heterotrimeric G proteins in cells. Sci Signal 1, re5.Google Scholar
  66. 66.
    Milligan, G., and Bouvier, M. (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272, 2914–25.PubMedCrossRefGoogle Scholar
  67. 67.
    Arai, R., Nakagawa, H., Kitayama, A., Ueda, H., and Nagamune, T. (2002) Detection of protein–protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J Biosci Bioeng 94, 362–4.PubMedGoogle Scholar
  68. 68.
    Yamakawa, Y., Ueda, H., Kitayama, A., and Nagamune, T. (2002) Rapid homogeneous immunoassay of peptides based on bioluminescence resonance energy transfer from firefly luciferase. J Biosci Bioeng 93, 537–42.PubMedGoogle Scholar
  69. 69.
    Molinari, P., Casella, I., and Costa, T. (2008) Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells. Biochem J 409, 251–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Du, M., Rambhadran, A., and Jayaraman, V. (2008) Luminescence resonance energy transfer investigation of conformational changes in the ligand binding domain of a kainate receptor. J Biol Chem 283, 27074–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Gonzalez, J., Rambhadran, A., Du, M., and Jayaraman, V. (2008) LRET investigations of conformational changes in the ligand binding domain of a functional AMPA receptor. Biochemistry 47, 10027–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Posson, D. J., and Selvin, P. R. (2008) Extent of voltage sensor movement during gating of Shaker K  +  channels. Neuron 59, 98–109.PubMedCrossRefGoogle Scholar
  73. 73.
    Granier, S., Kim, S., Shafer, A. M., Ratnala, V. R., Fung, J. J., Zare, R. N., and Kobilka, B. (2007) Structure and conformational changes in the C-terminal domain of the β2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J Biol Chem 282, 13895–905.PubMedCrossRefGoogle Scholar
  74. 74.
    Glatz, R. V., Leifert, W. R., Cooper, T. H., Bailey, K., Barton, C. S., Martin, S., Aloia, A. L., Bucco, O., Waniganayake, L., Wei, G., Raguse, B., Wieczorek, L., and McMurchie, E. J. (2007) Molecular Engineering of G Protein-Coupled Receptors and G Proteins for Cell-Free Biosensing. Aust. J. Chem. 60, 309–13CrossRefGoogle Scholar
  75. 75.
    Taraska, J. W., Puljung, M. C., Olivier, N. B., Flynn, G. E., and Zagotta, W. N. (2009) Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Methods 6, 532–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Fernandez-Suarez, M., and Ting, A. Y. (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9, 929–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Ellis-Davies, G. C. (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4, 619–28.PubMedCrossRefGoogle Scholar
  78. 78.
    Lober, R. M., Pereira, M. A., and Lambert, N. A. (2006) Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors. J Neurosci 26, 12602–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Qin, K., Sethi, P. R., and Lambert, N. A. (2008) Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J 22, 2920–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Fonseca, J. M., and Lambert, N. A. (2009) Instability of a class a G protein-coupled receptor oligomer interface. Mol Pharmacol 75, 1296–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Dorsch, S., Klotz, K. N., Engelhardt, S., Lohse, M. J., and Bunemann, M. (2009) Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6, 225–30.PubMedCrossRefGoogle Scholar
  82. 82.
    Matsushita, S., Nakata, H., Kubo, Y., and Tateyama, M. (2010) Ligand-induced rearrangements of the GABAb receptor revealed by fluorescence resonance energy transfer(FRET). J Biol Chem 285, 10291–9.Google Scholar
  83. 83.
    Ianoul, A., Grant, D. D., Rouleau, Y., Bani-Yaghoub, M., Johnston, L. J., and Pezacki, J. P. (2005) Imaging nanometer domains of β-adrenergic receptor complexes on the surface of cardiac myocytes. Nat Chem Biol 1, 196–202.PubMedCrossRefGoogle Scholar
  84. 84.
    Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I., and Stefan, E. (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6, 569–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Kerppola, T. K. (2009) Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev 38, 2876–86.Google Scholar
  86. 86.
    Kerppola, T. K. (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37, 465–87.PubMedCrossRefGoogle Scholar
  87. 87.
    MacDonald, M. L., Lamerdin, J., Owens, S., Keon, B. H., Bilter, G. K., Shang, Z., Huang, Z., Yu, H., Dias, J., Minami, T., Michnick, S. W., and Westwick, J. K. (2006) Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2, 329–37.PubMedCrossRefGoogle Scholar
  88. 88.
    Michnick, S. W., MacDonald, M. L., and Westwick, J. K. (2006) Chemical genetic strategies to delineate MAP kinase signaling pathways using protein-fragment complementation assays (PCA). Methods 40, 287–93.PubMedCrossRefGoogle Scholar
  89. 89.
    Remy, I., and Michnick, S. W. (2007) Application of protein-fragment complementation assays in cell biology. Biotechniques 42, 137, 139, 41 passim.Google Scholar
  90. 90.
    Hu, C. D., Chinenov, Y., and Kerppola, T. K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9, 789–98.PubMedCrossRefGoogle Scholar
  91. 91.
    Hynes, T. R., Tang, L., Mervine, S. M., Sabo, J. L., Yost, E. A., Devreotes, P. N., and Berlot, C. H. (2004) Visualization of G protein βγ dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J Biol Chem 279, 30279–86.PubMedCrossRefGoogle Scholar
  92. 92.
    Shyu, Y. J., Liu, H., Deng, X., and Hu, C. D. (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40, 61–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Hynes, T. R., Yost, E., Mervine, S., and Berlot, C. H. (2008) Multicolor BiFC analysis of competition among G protein β and γ subunit interactions. Methods 45, 207–13.PubMedCrossRefGoogle Scholar
  94. 94.
    Mervine, S. M., Yost, E. A., Sabo, J. L., Hynes, T. R., and Berlot, C. H. (2006) Analysis of G protein βγ dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of β1 for particular γ subunits. Mol Pharmacol 70, 194–205.PubMedGoogle Scholar
  95. 95.
    Rose, R. H., Briddon, S. J., and Holliday, N. D. (2010) Bimolecular fluorescence complementation: lighting up seven transmembrane domain receptor signalling networks. Br J Pharmacol 159, 738–50.Google Scholar
  96. 96.
    Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., and Bargmann, C. I. (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Fan, F., Binkowski, B. F., Butler, B. L., Stecha, P. F., Lewis, M. K., and Wood, K. V. (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem Biol 3, 346–51.PubMedCrossRefGoogle Scholar
  98. 98.
    Luker, K. E., Gupta, M., and Luker, G. D. (2008) Imaging CXCR4 signaling with firefly luciferase complementation. Anal Chem 80, 5565–73.PubMedCrossRefGoogle Scholar
  99. 99.
    Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., and Luker, G. D. (2009) Imaging ligand-dependent activation of CXCR7. Neoplasia 11, 1022–35.PubMedGoogle Scholar
  100. 100.
    Villalobos, V., Naik, S., and Piwnica-Worms, D. (2008) Detection of protein–protein interactions in live cells and animals with split firefly luciferase protein fragment complementation. Methods Mol Biol 439, 339–52.PubMedCrossRefGoogle Scholar
  101. 101.
    Yang, K. S., Ilagan, M. X., Piwnica-Worms, D., and Pike, L. J. (2009) Luciferase fragment complementation imaging of conformational changes in the epidermal growth factor receptor. J Biol Chem 284, 7474–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Remy, I., and Michnick, S. W. (2006) A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3, 977–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Kim, S. B., Sato, M., and Tao, H. (2009) Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells. Anal Chem 81, 67–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Stefan, E., Aquin, S., Berger, N., Landry, C. R., Nyfeler, B., Bouvier, M., and Michnick, S. W. (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci U S A 104, 16916–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Luker, K. E., Gupta, M., and Luker, G. D. (2009) Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 23, 823–34.PubMedCrossRefGoogle Scholar
  106. 106.
    Guo, W., Urizar, E., Kralikova, M., Mobarec, J. C., Shi, L., Filizola, M., and Javitch, J. A. (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27, 2293–304.PubMedCrossRefGoogle Scholar
  107. 107.
    Rebois, R. V., Robitaille, M., Petrin, D., Zylbergold, P., Trieu, P., and Hébert, T. E. (2008) Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells. Methods 45, 214–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Cabantous, S., Terwilliger, T. C., and Waldo, G. S. (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23, 102–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Cabantous, S., Pedelacq, J. D., Mark, B. L., Naranjo, C., Terwilliger, T. C., and Waldo, G. S. (2005) Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struct Funct Genomics 6, 113–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Cabantous, S., and Waldo, G. S. (2006) In vivo and in vitro protein solubility assays using split GFP. Nat Methods 3, 845–54.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen, Y., Li, S., Chen, T., Hua, H., and Lin, Z. (2009) Random dissection to select for protein split sites and its application in protein fragment complementation. Protein Sci 18, 399–409.PubMedCrossRefGoogle Scholar
  112. 112.
    Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., and Waldo, G. S. (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24, 79–88.PubMedCrossRefGoogle Scholar
  113. 113.
    Ottmann, C., Weyand, M., Wolf, A., and Kuhlmann, J. (2009) Applicability of superfolder YFP bimolecular fluorescence complementation in vitro. Biol Chem 390, 81–90.PubMedCrossRefGoogle Scholar
  114. 114.
    Chu, J., Zhang, Z., Zheng, Y., Yang, J., Qin, L., Lu, J., Huang, Z. L., Zeng, S., and Luo, Q. (2009) A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens Bioelectron 25, 234–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Subach, F. V., Patterson, G. H., Manley, S., Gillette, J. M., Lippincott-Schwartz, J., and Verkhusha, V. V. (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6, 153–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Andresen, M., Stiel, A. C., Folling, J., Wenzel, D., Schonle, A., Egner, A., Eggeling, C., Hell, S. W., and Jakobs, S. (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26, 1035–40.PubMedCrossRefGoogle Scholar
  117. 117.
    Chudakov, D. M., Lukyanov, S., and Lukyanov, K. A. (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2, 2024–32.PubMedCrossRefGoogle Scholar
  118. 118.
    Morell, M., Espargaro, A., Aviles, F. X., and Ventura, S. (2008) Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc 3, 22–33.PubMedCrossRefGoogle Scholar
  119. 119.
    Ding, Z., Liang, J., Lu, Y., Yu, Q., Songyang, Z., Lin, S. Y., and Mills, G. B. (2006) A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci U S A 103, 15014–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Giacomotto, J., and Ségalat, L. (2010) High-throughput screening and small animal models, where are we? Br J Pharmacol 160, 204–16PubMedCrossRefGoogle Scholar
  121. 121.
    Luker, K., Gupta, M., and Luker, G. (2009) Bioluminescent CXCL12 fusion protein for cellular studies of CXCR4 and CXCR7. Biotechniques 47, 625–32.PubMedCrossRefGoogle Scholar
  122. 122.
    Hiatt, S. M., Shyu, Y. J., Duren, H. M., and Hu, C. D. (2008) Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans. Methods 45, 185–91.PubMedCrossRefGoogle Scholar
  123. 123.
    Adams, S. R., Campbell, R. E., Gross, L. A., Martin, B. R., Walkup, G. K., Yao, Y., Llopis, J., and Tsien, R. Y. (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124, 6063–76.PubMedCrossRefGoogle Scholar
  124. 124.
    Keppler, A., Kindermann, M., Gendreizig, S., Pick, H., Vogel, H., and Johnsson, K. (2004) Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32, 437–44.PubMedCrossRefGoogle Scholar
  125. 125.
    Gautier, A., Juillerat, A., Heinis, C., Correa, I. R., Jr., Kindermann, M., Beaufils, F., and Johnsson, K. (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15, 128–36.PubMedCrossRefGoogle Scholar
  126. 126.
    Robitaille, M., Héroux, I., Baragli, A., and Hébert, T. E. (2009) Novel tools for use in bioluminescence resonance energy transfer (BRET) assays. Methods Mol Biol 574, 215–34.PubMedCrossRefGoogle Scholar
  127. 127.
    Maurel, D., Comps-Agrar, L., Brock, C., Rives, M. L., Bourrier, E., Ayoub, M. A., Bazin, H., Tinel, N., Durroux, T., Prezeau, L., Trinquet, E., and Pin, J. P. (2008) Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5, 561–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Héroux, M., Hogue, M., Lemieux, S., and Bouvier, M. (2007) Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. J Biol Chem 282, 31610–20.PubMedCrossRefGoogle Scholar
  129. 129.
    Ma, A. W., Pawagi, A. B., and Wells, J. W. (2008) Heterooligomers of the muscarinic receptor and G proteins purified from porcine atria. Biochem Biophys Res Commun 374, 128–33.PubMedCrossRefGoogle Scholar
  130. 130.
    Ma, A. W., Redka, D. S., Pisterzi, L. F., Angers, S., and Wells, J. W. (2007) Recovery of oligomers and cooperativity when monomers of the M2 muscarinic cholinergic receptor are reconstituted into phospholipid vesicles. Biochemistry 46, 7907–27.PubMedCrossRefGoogle Scholar
  131. 131.
    Pisterzi, L. F., Jansma, D. B., Georgiou, J., Woodside, M. J., Chou, J. T., Angers, S., Raicu, V., and Wells, J. W. (2010) Oligomeric size of the M2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer (FRET). J Biol Chem. 285, 16723–38PubMedCrossRefGoogle Scholar
  132. 132.
    Fung, J. J., Deupi, X., Pardo, L., Yao, X. J., Velez-Ruiz, G. A., Devree, B. T., Sunahara, R. K., and Kobilka, B. K. (2009) Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J 28, 3315–28.PubMedCrossRefGoogle Scholar
  133. 133.
    Vidi, P. A., Chemel, B. R., Hu, C. D., and Watts, V. J. (2008) Ligand-dependent oligomerization of dopamine D(2) and adenosine A(2A) receptors in living neuronal cells. Mol Pharmacol 74, 544–51.PubMedCrossRefGoogle Scholar
  134. 134.
    Vidi, P. A., Chen, J., Irudayaraj, J. M., and Watts, V. J. (2008) Adenosine A(2A) receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett 582, 3985–90.PubMedCrossRefGoogle Scholar
  135. 135.
    Gandia, J., Galino, J., Amaral, O. B., Soriano, A., Lluis, C., Franco, R., and Ciruela, F. (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett 582, 2979–84.PubMedCrossRefGoogle Scholar
  136. 136.
    Navarro, G., Carriba, P., Gandia, J., Ciruela, F., Casado, V., Cortes, A., Mallol, J., Canela, E. I., Lluis, C., and Franco, R. (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. ScientificWorldJournal 8, 1088–97.PubMedCrossRefGoogle Scholar
  137. 137.
    Hamatake, M., Aoki, T., Futahashi, Y., Urano, E., Yamamoto, N., and Komano, J. (2009) Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci 100, 95–102.PubMedCrossRefGoogle Scholar
  138. 138.
    Carriba, P., Navarro, G., Ciruela, F., Ferre, S., Casado, V., Agnati, L., Cortes, A., Mallol, J., Fuxe, K., Canela, E. I., Lluis, C., and Franco, R. (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5, 727–33.PubMedCrossRefGoogle Scholar
  139. 139.
    Vidi, P. A., and Watts, V. J. (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling. Mol Pharmacol 75, 733–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Shyu, Y. J., Suarez, C. D., and Hu, C. D. (2008) Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat Protoc 3, 1693–702.PubMedCrossRefGoogle Scholar
  141. 141.
    Rovira, X., Pin, J. P., and Giraldo, J. (2010) The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends Pharmacol Sci 31, 15–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Rives, M. L., Vol, C., Fukazawa, Y., Tinel, N., Trinquet, E., Ayoub, M. A., Shigemoto, R., Pin, J. P., and Prezeau, L. (2009) Crosstalk between GABA(B) and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J 28, 2195–208.PubMedCrossRefGoogle Scholar
  143. 143.
    Pin, J. P., Comps-Agrar, L., Maurel, D., Monnier, C., Rives, M. L., Trinquet, E., Kniazeff, J., Rondard, P., and Prezeau, L. (2009) G-protein-coupled receptor oligomers: two or more for what? Lessons from mGlu and GABA(B) receptors. J Physiol 587, 5337–44.PubMedCrossRefGoogle Scholar
  144. 144.
    Tsien, R. Y. (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579, 927–32.PubMedCrossRefGoogle Scholar
  145. 145.
    Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Day, R. N., and Davidson, M. W. (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38, 2887–921.PubMedCrossRefGoogle Scholar
  147. 147.
    Shaner, N. C., Patterson, G. H., and Davidson, M. W. (2007) Advances in fluorescent protein technology. J Cell Sci 120, 4247–60.PubMedCrossRefGoogle Scholar
  148. 148.
    Lymperopoulos, K., Kiel, A., Seefeld, A., Stohr, K., and Herten, D. P. (2010) Fluorescent probes and delivery methods for single-molecule experiments. Chemphyschem 11, 43–53.PubMedCrossRefGoogle Scholar
  149. 149.
    Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., and Ha, T. (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77, 51–76.PubMedCrossRefGoogle Scholar
  150. 150.
    Coulon, V., Audet, M., Homburger, V., Bockaert, J., Fagni, L., Bouvier, M., and Perroy, J. (2008) Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J 94, 1001–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Perroy, J. (2010) Subcellular dynamic imaging of protein–protein interactions in live cells by bioluminescence resonance energy transfer. Methods Mol Biol 591, 325–33.PubMedCrossRefGoogle Scholar
  152. 152.
    Xu, X., Soutto, M., Xie, Q., Servick, S., Subramanian, C., von Arnim, A. G., and Johnson, C. H. (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104, 10264–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Loening, A. M., Wu, A. M., and Gambhir, S. S. (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4, 641–3.PubMedCrossRefGoogle Scholar
  154. 154.
    Loening, A. M., Fenn, T. D., Wu, A. M., and Gambhir, S. S. (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19, 391–400.PubMedCrossRefGoogle Scholar
  155. 155.
    De, A., Loening, A. M., and Gambhir, S. S. (2007) An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Res 67, 7175–83.PubMedCrossRefGoogle Scholar
  156. 156.
    De, A., Ray, P., Loening, A. M., and Gambhir, S. S. (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein–protein interactions from single live cells and living animals. FASEB J 23, 2702–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Hoshino, H., Nakajima, Y., and Ohmiya, Y. (2007) Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat Methods 4, 637–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Audet, M., Lagac, M., Silversides, D. W., and Bouvier, M. (2010) Protein–protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. FASEB J 24, 2829–38.Google Scholar
  159. 159.
    Mezzanotte, L., Fazzina, R., Michelini, E., Tonelli, R., Pession, A., Branchini, B., and Roda, A. (2010) In Vivo Bioluminescence Imaging of Murine Xenograft Cancer Models with a Red-shifted Thermostable Luciferase. Mol Imaging Biol 4, 406–14.Google Scholar
  160. 160.
    Lippincott-Schwartz, J., and Patterson, G. H. (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19, 555–65.PubMedCrossRefGoogle Scholar
  161. 161.
    Lippincott-Schwartz, J., and Manley, S. (2009) Putting super-resolution fluorescence microscopy to work. Nat Methods 6, 21–3.PubMedCrossRefGoogle Scholar
  162. 162.
    Deng, C., Xiong, X., and Krutchinsky, A. N. (2009) Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol Cell Proteomics 8, 1413–23.PubMedCrossRefGoogle Scholar
  163. 163.
    Kobayashi, T., Morone, N., Kashiyama, T., Oyamada, H., Kurebayashi, N., and Murayama, T. (2008) Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research. PLoS One 3, e3822.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pharmacology and TherapeuticsMcGill UniversityMontréalCanada

Personalised recommendations