Visualizing Receptor Endocytosis and Trafficking

  • Ali Salahpour
  • Larry S. BarakEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 756)


G-protein-coupled 7 transmembrane domain receptors (GPCR-7TMR) represent the largest class of membrane protein drug targets. They respond to a plethora of ligands ranging from small molecules to polypeptide hormones. Upon activation, almost all GPCR-7TMRs undergo desensitization followed by receptor internalization and resensitization. This cycle is crucially important for regulating the signal emanating from the receptor and is tightly linked to the receptor and/or the ligands studied. In this chapter, we describe some of the technical approaches that can be used to study GPCR internalization and trafficking.

Key words

G-protein-coupled receptor Green fluorescent protein Immunofluorescence Internalization Trafficking 


  1. 1.
    Marchese, A., Chen, C., Kim, Y. M., and Benovic, J. L. (2003) The ins and outs of G protein-coupled receptor trafficking. Trends Biochem Sci 28, 36976.PubMedCrossRefGoogle Scholar
  2. 2.
    Singer, S. J., and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Saxton, M. J., and Jacobson, K. (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26, 373–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, R. G., Goldstein, J. L., and Brown, M. S. (1980) Fluorescence visualization of receptor-bound low density lipoprotein in human fibroblasts. J Recept Res 1, 17–39.PubMedGoogle Scholar
  5. 5.
    Ravdin, P., and Axelrod, D. (1977) Fluoresc-ent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal Biochem 80, 585–92.PubMedCrossRefGoogle Scholar
  6. 6.
    von Zastrow, M., and Kobilka, B. K. (1992) Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 267, 3530–8.Google Scholar
  7. 7.
    Barak, L. S., Tiberi, M., Freedman, N. J., Kwatra, M. M., Lefkowitz, R. J., and Caron, M. G. (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem 269, 2790–5.PubMedGoogle Scholar
  8. 8.
    Barak, L. S., Ferguson, S. S., Zhang, J., Martenson, C., Meyer, T., and Caron, M. G. (1997) Internal trafficking and surface mobility of a functionally intact beta2-adrenergic receptor-green fluorescent protein conjugate. Mol Pharmacol 51, 177–84.PubMedGoogle Scholar
  9. 9.
    Ferguson, S. S. (1998) Using green fluorescent protein to understand the mechanisms of G-protein-coupled receptor regulation. Braz J Med Biol Res 31, 1471–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
  2. 2.Department of Cell BiologyDuke UniversityDurhamUSA

Personalised recommendations