Advertisement

Genetically Encoded Fluorescent Reporters to Visualize Protein Kinase C Activation in Live Cells

  • Lisa L. Gallegos
  • Alexandra C. NewtonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 756)

Abstract

Protein kinase C (PKC) signaling drives many important cellular processes and its dysregulation results in pathophysiologies such as cancer (Gokmen-Polar et al., Cancer Res 61:1375–1381, 2001). Because PKC is activated acutely and allosterically, it is difficult to monitor the cellular activity of endogenous PKC by conventional methodologies (Newton, Methods Enzymol 345:499–506, 2002). Rather, PKC signaling is best studied in situ using biosensors such as FRET-based reporters. We have generated several FRET-based reporters for studying PKC signaling in real time in live cells (Violin and Newton, IUBMB Life 55:653–660, 2003). Using these reporters, we have demonstrated phase-locked oscillations in Ca2+ release and membrane-localized endogenous PKC activity in response to histamine (Violin et al., J Cell Biol 161:899–909, 2003), as well as distinct signatures of endogenous PKC signaling at specific organelles in response to uridine-5′-triphosphate (UTP; Gallegos et al., J Biol Chem 281:30947–30956, 2006). Here we describe methods to image cells expressing the reporters and elaborate on data analyses, control experiments, and variations for imaging the activity of expressed PKC.

Key words

Protein kinase C Diacylglycerol Förster resonance energy transfer Targeted reporter Live-cell imaging 

Notes

Acknowledgments

We thank Maya Kunkel for critical reading of this manuscript. This work was supported by National Institutes of Health grants GM43154 and PO1 DK54441.

References

  1. 1.
    Manning, B. D. (2009) Challenges and opportunities in defining the essential cancer kinome. Sci Signal 2, pe15.Google Scholar
  2. 2.
    Newton, A. C. (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370, 361–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Suzuki, A., and Ohno, S. (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119, 979–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Gallegos, L. L., and Newton, A. C. (2008) Spatiotemporal dynamics of lipid signaling: protein kinase C as a paradigm. IUBMB Life 60, 782–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Newton, A. C. (2008) Protein kinase C. IUBMB Life 60, 765–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Violin, J. D., Zhang, J., Tsien, R. Y., and Newton, A. C. (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161, 899–909.PubMedCrossRefGoogle Scholar
  7. 7.
    Gallegos, L. L., Kunkel, M. T., and Newton, A. C. (2006) Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J Biol Chem 281, 30947–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Mattingly, R. R. (2003) Mitogen-activated protein kinase signaling in drug-resistant neuroblastoma cells. Methods Mol Biol 218, 71–83.PubMedGoogle Scholar
  9. 9.
    Newton, A. C. (2002) Analyzing protein kinase C activation. Methods Enzymol 345, 499–506.PubMedCrossRefGoogle Scholar
  10. 10.
    Pan, T. T., Neo, K. L., Hu, L. F., Yong, Q. C., and Bian, J. S. (2008) H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294, C169-77.PubMedCrossRefGoogle Scholar
  11. 11.
    Hosoda, K., Saito, N., Kose, A., Ito, A., Tsujino, T., Ogitat, K., Kikkawat, U., Onot, Y., Igarashif, K., Nishizukat, Y., and Tanaka, C. (1989) Immunocytochemical localization of the beta I subspecies of protein kinase C in rat brain. Proc Natl Acad Sci U S A 86, 1393–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Saito, N., Kose A, Ito A, Hosoda, K., Mori, M., Hirata, M., Ogitat, K., Kikkawat, U., Onot, Y., Igarashif, K., Nishizukat, Y., and Tanaka, C. (1989) Immunocytochemical localization of beta II subspecies of protein kinase C in rat brain. Proc Natl Acad Sci U S A 86, 3409–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Miyawaki, A. (2008) Green fluorescent protein glows gold. Cell 135, 987–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Sakai, N., Sasaki, K., Ikegaki, N., Shirai, Y., Ono, Y., and Saito, N. (1997) Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein. J Cell Biol 139, 1465–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Oancea, E., and Meyer, T. (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, Q. J., Bhattacharyya, D., Garfield, S., Nacro, K., Marquez, V. E., and Blumberg, P. M. (1999) Differential localization of protein kinase C delta by phorbol esters and related compounds using a fusion protein with green fluorescent protein. J Biol Chem 274, 37233–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, J., Ma, Y., Taylor, S. S., and Tsien. R. Y. (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 98, 14997–5002.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, J., Gambhir, A., Hangyas-Mihalyne, G., Murray, D., Golebiewska, U., and McLaughlin, S. (2002) Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J Biol Chem 277, 34401–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Dries, D. R., Gallegos, L. L., and Newton, A. C. (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J Biol Chem 282, 826–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Gokmen-Polar, Y., Murray, N. R., Velasco, M. A., Gatalica, Z., and Fields, A. P. (2001) Elevated protein kinase C betaII is an early promotive event in colon carcinogenesis. Cancer Res 61, 1375–81.PubMedGoogle Scholar
  22. 22.
    Violin, J. D., and Newton, A. C. (2003) Pathway illuminated: visualizing protein kinase C signaling. IUBMB Life 55, 653–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Kajimoto, T., Sawamura, S., Tohyama, Y., Mori, U., and Newton AC. (2010) Protein kinase C δ-specific activity reporter reveals agonist-evoked nuclear activity controlled by Src family of kinases. J Biol Chem 285, 41896–910.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations