Advertisement

Multicolor BiFC Analysis of G Protein βγ Complex Formation and Localization

  • Thomas R. Hynes
  • Evan A. Yost
  • Stacy M. Yost
  • Catherine H. BerlotEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 756)

Abstract

Cells co-express multiple G protein β and γ subunit isoforms, but the extent to which individual subunits associate to form particular βγ complexes is not known. This issue is important because in vivo knockout experiments suggest that specific βγ complexes may have unique functions despite the fact that most complexes exhibit similar properties when assayed in reconstituted systems. This chapter describes how multicolor bimolecular fluorescence complementation (BiFC) can be used in living cells to study the association preferences of β and γ subunits. Multicolor BiFC determines the association preferences of these subunits by quantifying the two fluorescent complexes formed when β or γ subunits fused to amino terminal fragments of yellow fluorescent protein (YFP-N) and cyan fluorescent protein (CFP-N) compete for interaction with limiting amounts of a common γ or β subunit, respectively, fused to a carboxyl terminal fragment of CFP (CFP-C). One means by which βγ complexes may differ from each other and thereby mediate unique functions in vivo is in the kinetics and patterns of their internalization responses to stimulation of G protein-coupled receptors (GPCRs). Methods are described for imaging and quantifying the internalization of pairs of βγ complexes in response to GPCR stimulation in living cells.

Key words

Multicolor bimolecular fluorescence complementation Heterotrimeric G protein G protein βγ complex Spectrofluorometer Yellow fluorescent protein Cyan fluorescent protein Fluorescence microscopy Live cell imaging Subcellular targeting G protein-coupled receptor 

References

  1. 1.
    Robishaw, J. D., and Berlot, C. H. (2004) Translating G protein subunit diversity into functional specificity. Curr Opin Cell Biol 16, 206–209.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang, Q., Mullah, B., Hansen, C., Asundi, J., and Robishaw, J. D. (1997) Ribozyme-mediated suppression of the G protein gamma7 subunit suggests a role in hormone regulation of adenylylcyclase activity. J Biol Chem 272, 26040–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang, Q., Mullah, B. K., and Robishaw, J. D. (1999) Ribozyme approach identifies a functional association between the G protein beta1gamma7 subunits in the beta-adrenergic receptor signaling pathway. J Biol Chem 274, 17365–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwindinger, W. F., Betz, K. S., Giger, K. E., Sabol, A., Bronson, S. K., and Robishaw, J. D. (2003) Loss of G protein gamma 7 alters behavior and reduces striatal alpha(olf) level and cAMP production. J Biol Chem 278, 6575–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Schwindinger, W. F., Giger, K. E., Betz, K. S., Stauffer, A. M., Sunderlin, E. M., Sim-Selley, L. J., Selley, D. E., Bronson, S. K., and Robishaw, J. D. (2004) Mice with deficiency of G protein gamma3 are lean and have seizures. Mol Cell Biol 24, 7758–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Hu, C. D., and Kerppola, T. K. (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21, 539–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Rizzo, M. A., Springer, G. H., Granada, B., and Piston, D. W. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22, 445–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kerppola, T. K. (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7, 449–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Magliery, T. J., Wilson, C. G., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., and Regan, L. (2005) Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc 127, 146–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones, M. B., and Garrison, J. C. (1999) Instability of the G-protein beta5 subunit in detergent. Anal. Biochem 268, 126–33.PubMedCrossRefGoogle Scholar
  11. 11.
    McIntire, W. E., MacCleery, G., Murphree, L. J., Kerchner, K. R., Linden, J., and Garrison, J. C. (2006) Influence of differential stability of G protein betagamma dimers containing the gamma11 subunit on functional activity at the M1 muscarinic receptor, A1 adenosine receptor, and phospholipase C-beta. Biochemistry 45, 11616–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Hynes, T. R., Tang, L., Mervine, S. M., Sabo, J. L., Yost, E. A., Devreotes, P. N., and Berlot, C. H. (2004) Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J Biol Chem 279, 30279–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Yost, E. A., Mervine, S. M., Sabo, J. L., Hynes, T. R., and Berlot, C. H. (2007) Live cell analysis of G protein beta5 complex formation, function, and targeting. Mol Pharmacol 72, 812–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Mervine, S. M., Yost, E. A., Sabo, J. L., Hynes, T. R., and Berlot, C. H. (2006) Analysis of G protein beta-gamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits. Mol Pharmacol 70, 194–205.PubMedGoogle Scholar
  16. 16.
    Ormo, M., Cubbitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. (1996) Crystal structure of the Aequoria victoria green fluorescent protein. Science 273, 1392–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hynes, T. R., Yost, E., Mervine, S., and Berlot, C. H. (2008) Multicolor BiFC analysis of competition among G protein beta and gamma subunit interactions. Methods 45, 207–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thomas R. Hynes
    • 1
  • Evan A. Yost
    • 1
  • Stacy M. Yost
    • 1
  • Catherine H. Berlot
    • 1
    Email author
  1. 1.Weis Center for ResearchGeisinger ClinicDanvilleUSA

Personalised recommendations