Skip to main content

Studying Schizophrenia in a Dish: Use of Primary Neuronal Cultures to Study the Long-Term Effects of NMDA Receptor Antagonists on Parvalbumin-Positive Fast-Spiking Interneurons

  • Protocol
  • First Online:
Animal Models of Schizophrenia and Related Disorders

Part of the book series: Neuromethods ((NM,volume 59))

  • 821 Accesses

Abstract

Evidence obtained from schizophrenia post-mortem brain studies have pointed to deficiencies in inhibitory systems, in particular of the fast-spiking parvalbumin (PV)-positive inhibitory interneurons, as responsible for several aspects of schizophrenia pathophysiology. This hypothesis has been confirmed in pharmacological as well as genetic models of the disease, but when and how this dysfunction occurs is still unknown. Exposure to NMDA receptor antagonists is one of the most used pharmacological models for the study of schizophrenia, due to its capacity to produce a psychotic syndrome in humans and to produce an outbreak in schizophrenia patients. Using this model, we and others have shown that dysfunction of the PV-inhibitory system is most probably responsible for the neural network alterations, leading to the schizophrenia-like behavior in primates and rodents. Development of PV-inhibitory neurons occurs postnatally in mammals and follows a predetermined program that occurs also in cultures of cortical neurons. In this chapter we describe in detail the methodology we have used over the last decade to culture these neurons and that led to the discovery of how blockade of NMDA receptors results in the dysfunction of PV interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayhan, Y., Sawa, A., Ross, C.A., and Pletnikov, M.V. (2009). Animal models of gene–environment interactions in schizophrenia. Behav Brain Res 204, 274–281

    Article  PubMed  CAS  Google Scholar 

  2. Javitt, D.C. (2007). Glutamate and schizophrenia: phencyclidine, N-methyl-d-aspartate receptors, and dopamine–glutamate interactions. Int Rev Neurobiol 78, 69–108

    Article  PubMed  CAS  Google Scholar 

  3. Lewis, D.A., Hashimoto, T., and Volk, D.W. (2005). Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6, 312–324

    Article  PubMed  CAS  Google Scholar 

  4. Mouri, A., Noda, Y., Enomoto, T., and Nabeshima, T. (2007). Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51, 173–184

    Article  PubMed  CAS  Google Scholar 

  5. Beasley, C.L., and Reynolds, G.P. (1997). Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24, 349–355

    Article  PubMed  CAS  Google Scholar 

  6. Benes, F.M., and Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27

    Article  PubMed  CAS  Google Scholar 

  7. Hashimoto, T., Volk, D.W., Eggan, S.M., Mirnics, K., Pierri, J.N., Sun, Z., Sampson, A.R., and Lewis, D.A. (2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23, 6315–6326

    PubMed  CAS  Google Scholar 

  8. Ammassari-Teule, M., Sgobio, C., Biamonte, F., Marrone, C., Mercuri, N.B., and Keller, F. (2009). Reelin haploinsufficiency reduces the density of PV+ neurons in circumscribed regions of the striatum and selectively alters striatal-based behaviors. Psychopharmacology (Berl) 204, 511–521

    Article  CAS  Google Scholar 

  9. Do, K.Q., Cabungcal, J.H., Frank, A., Steullet, P., and Cuenod, M. (2009). Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 19, 220–230

    Article  PubMed  CAS  Google Scholar 

  10. Fisahn, A., Neddens, J., Yan, L., and Buonanno, A. (2009). Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb Cortex 19, 612–618

    Article  PubMed  Google Scholar 

  11. Hikida, T., Jaaro-Peled, H., Seshadri, S., Oishi, K., Hookway, C., Kong, S., Wu, D., Xue, R., Andrade, M., Tankou, S., Mori, S., Gallagher, M., Ishizuka, K., Pletnikov, M., Kida, S., and Sawa, A. (2007). Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104, 14501–14506

    Article  PubMed  CAS  Google Scholar 

  12. Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., and Moore, C.I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667

    Article  PubMed  CAS  Google Scholar 

  13. Doischer, D., Hosp, J.A., Yanagawa, Y., Obata, K., Jonas, P., Vida, I., and Bartos, M. (2008). Postnatal differentiation of basket cells from slow to fast signaling devices. J Neurosci 28, 12956–12968

    Article  PubMed  CAS  Google Scholar 

  14. Sohal, V.S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702

    Article  PubMed  CAS  Google Scholar 

  15. Alexander, G.E., and Goldman, P.S. (1978). Functional development of the dorsolateral prefrontal cortex: an analysis utilizing reversible cryogenic depression. Brain Res 143, 233–249

    Article  PubMed  CAS  Google Scholar 

  16. Rao, S.G., Williams, G.V., and Goldman-Rakic, P.S. (2000). Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20, 485–494

    PubMed  CAS  Google Scholar 

  17. Wilson, F.A., O’Scalaidhe, S.P., and Goldman-Rakic, P.S. (1994). Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci USA 91, 4009–4013

    Article  PubMed  CAS  Google Scholar 

  18. Goldman-Rakic, P.S. (1999). The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46, 650–661

    Article  PubMed  CAS  Google Scholar 

  19. Kawaguchi, Y. (2001). Distinct firing patterns of neuronal subtypes in cortical synchronized activities. J Neurosci 21, 7261–7272

    PubMed  CAS  Google Scholar 

  20. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5, 793–807

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez-Burgos, G., and Lewis, D.A. (2008). GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34, 944–961

    Article  PubMed  Google Scholar 

  22. Uhlhaas, P.J., Haenschel, C., Nikolic, D., and Singer, W. (2008). The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34, 927–943

    Article  PubMed  Google Scholar 

  23. Jentsch, J.D., and Roth, R.H. (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20, 201–225

    Article  PubMed  CAS  Google Scholar 

  24. Le Pen, G., Grottick, A.J., Higgins, G.A., and Moreau, J.L. (2003). Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 28, 1799–1809

    Article  PubMed  CAS  Google Scholar 

  25. Stefani, M.R., and Moghaddam, B. (2002). Effects of repeated treatment with amphetamine or phencyclidine on working memory in the rat. Behav Brain Res 134, 267–274

    Article  PubMed  CAS  Google Scholar 

  26. Krystal, J.H., Perry, E.B., Jr., Gueorguieva, R., Belger, A., Madonick, S.H., Abi-Dargham, A., Cooper, T.B., Macdougall, L., Abi-Saab, W., and D’Souza, D.C. (2005). Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry 62, 985–994

    Article  PubMed  CAS  Google Scholar 

  27. Stoet, G., and Snyder, L.H. (2006). Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control. Neuropsychopharmacology 31, 1675–1681

    Article  PubMed  CAS  Google Scholar 

  28. Behrens, M.M., Ali, S.S., Dao, D.N., Lucero, J., Shekhtman, G., Quick, K.L., and Dugan, L.L. (2007). Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318, 1645–1647

    Article  PubMed  CAS  Google Scholar 

  29. Cochran, S.M., Kennedy, M., McKerchar, C.E., Steward, L.J., Pratt, J.A., and Morris, B.J. (2003). Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28, 265–275

    Article  PubMed  CAS  Google Scholar 

  30. Morrow, B.A., Elsworth, J.D., and Roth, R.H. (2007). Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology (Berl) 192, 283–290

    Article  CAS  Google Scholar 

  31. Zhang, Y., Behrens, M.M., and Lisman, J.E. (2008). Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 100, 959–965

    Article  PubMed  CAS  Google Scholar 

  32. Jonas, P., Bischofberger, J., Fricker, D., and Miles, R. (2004). Interneuron Diversity series: fast in, fast out – temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27, 30–40

    Article  PubMed  CAS  Google Scholar 

  33. Bergles, D.E., Doze, V.A., Madison, D.V., and Smith, S.J. (1996). Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J Neurosci 16, 572–585

    PubMed  CAS  Google Scholar 

  34. Gorelova, N., Seamans, J.K., and Yang, C.R. (2002). Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88, 3150–3166

    Article  PubMed  CAS  Google Scholar 

  35. Jones, S., and Yakel, J.L. (1997). Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504 (Pt 3), 603–610

    Article  PubMed  CAS  Google Scholar 

  36. Gulyas, A.I., Megias, M., Emri, Z., and Freund, T.F. (1999). Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19, 10082–10097

    PubMed  CAS  Google Scholar 

  37. Hull, C., and Scanziani, M. (2007). It’s about time for thalamocortical circuits. Nat Neurosci 10, 400–402

    Article  PubMed  CAS  Google Scholar 

  38. Daw, M.I., Ashby, M.C., and Isaac, J.T. (2007). Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex. Nat Neurosci 10, 453–461

    Article  PubMed  CAS  Google Scholar 

  39. de Lecea, L., del Rio, J.A., and Soriano, E. (1995). Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat. Brain Res Mol Brain Res 32, 1–13

    Article  PubMed  Google Scholar 

  40. Chattopadhyaya, B., Di Cristo, G., Wu, C.Z., Knott, G., Kuhlman, S., Fu, Y., Palmiter, R.D., and Huang, Z.J. (2007). GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903

    Article  PubMed  CAS  Google Scholar 

  41. Di Cristo, G., Wu, C., Chattopadhyaya, B., Ango, F., Knott, G., Welker, E., Svoboda, K., and Huang, Z.J. (2004). Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat Neurosci 7, 1184–1186

    Article  PubMed  Google Scholar 

  42. Kinney, J.W., Davis, C.N., Tabarean, I., Conti, B., Bartfai, T., and Behrens, M.M. (2006). A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 26, 1604–1615

    Article  PubMed  CAS  Google Scholar 

  43. Dichter, M.A. (1978). Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res 149, 279–293

    Article  PubMed  CAS  Google Scholar 

  44. Dichter, M.A. (1980). Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res 190, 111–121

    Article  PubMed  CAS  Google Scholar 

  45. Kato-Negishi, M., Muramoto, K., Kawahara, M., Kuroda, Y., and Ichikawa, M. (2004). Developmental changes of GABAergic synapses formed between primary cultured cortical neurons. Brain Res Dev Brain Res 152, 99–108

    Article  PubMed  CAS  Google Scholar 

  46. Lesuisse, C., and Martin, L.J. (2002). Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol 51, 9–23

    Article  PubMed  Google Scholar 

  47. Zona, C., Palma, E., Brancati, A., and Avoli, M. (1994). Age-dependent appearance of synaptic currents in rat neocortical neurons in culture. Synapse 18, 1–6

    Article  PubMed  CAS  Google Scholar 

  48. Jovanovic, J.N., Thomas, P., Kittler, J.T., Smart, T.G., and Moss, S.J. (2004). Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J Neurosci 24, 522–530

    Article  PubMed  CAS  Google Scholar 

  49. Muir, J.K., Lobner, D., Monyer, H., and Choi, D.W. (1996). GABAA receptor activation attenuates excitotoxicity but exacerbates oxygen-glucose deprivation-induced neuronal injury in vitro. J Cereb Blood Flow Metab 16, 1211–1218

    Article  PubMed  CAS  Google Scholar 

  50. Behrens, M.M., Strasser, U., Koh, J.Y., Gwag, B.J., and Choi, D.W. (1999). Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase. Neuroscience 94, 917–927

    Article  PubMed  CAS  Google Scholar 

  51. Behrens, M.M., Strasser, U., Lobner, D., and Dugan, L.L. (1999). Neurotrophin-mediated potentiation of neuronal injury. Microsc Res Tech 45, 276–284

    Article  PubMed  CAS  Google Scholar 

  52. Dugan, L.L., Bruno, V.G., Amagasu, S.M., and Giffard, R.G. (1995). Glia modulate the response of murine cortical neurons to excitotoxicity: Glia exacerbate AMPA neurotoxicity. J Neurosci 15, 4545–4555

    PubMed  CAS  Google Scholar 

  53. Heidinger, V., Manzerra, P., Wang, X.Q., Strasser, U., Yu, S.P., Choi, D.W., and Behrens, M.M. (2002). Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22, 5452–5461

    PubMed  CAS  Google Scholar 

  54. Kim, M.J., Dunah, A.W., Wang, Y.T., and Sheng, M. (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745–760

    Article  PubMed  CAS  Google Scholar 

  55. Yu, S.P., Canzoniero, L.M., and Choi, D.W. (2001). Ion homeostasis and apoptosis. Curr Opin Cell Biol 13, 405–411

    Article  PubMed  CAS  Google Scholar 

  56. Behrens, M.M., Ali, S.S., and Dugan, L.L. (2008). Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28, 13957–13966

    Article  PubMed  CAS  Google Scholar 

  57. Cauli, B., Audinat, E., Lambolez, B., Angulo, M.C., Ropert, N., Tsuzuki, K., Hestrin, S., and Rossier, J. (1997). Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17, 3894–3906

    PubMed  CAS  Google Scholar 

  58. Xi, D., Keeler, B., Zhang, W., Houle, J.D., and Gao, W.J. (2009). NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: application of laser microdissection technique. J Neurosci Methods 176, 172–181

    Article  PubMed  CAS  Google Scholar 

  59. Xia, S., Cai, Z.Y., Thi, L.L., Kim-Han, J.S., Dugan, L.L., Covey, D.F., and Rothman, S.M. (2002). The estrogen receptor is not essential for all estrogen neuroprotection: new evidence from a new analog. Neurobiol Dis 9, 282–293

    Article  PubMed  CAS  Google Scholar 

  60. Fejgin, K., Palsson, E., Wass, C., Svensson, L., and Klamer, D. (2008). Nitric oxide signaling in the medial prefrontal cortex is involved in the biochemical and behavioral effects of phencyclidine. Neuropsychopharmacology 33, 1874–1883

    Article  PubMed  CAS  Google Scholar 

  61. Zuo, D.Y., Wu, Y.L., Yao, W.X., Cao, Y., Wu, C.F., and Tanaka, M. (2007). Effect of MK-801 and ketamine on hydroxyl radical generation in the posterior cingulate and retrosplenial cortex of free-moving mice, as determined by in vivo microdialysis. Pharmacol Biochem Behav 86, 1–7

    Article  PubMed  CAS  Google Scholar 

  62. Papadia, S., Soriano, F.X., Leveille, F., Martel, M.A., Dakin, K.A., Hansen, H.H., Kaindl, A., Sifringer, M., Fowler, J., Stefovska, V., McKenzie, G., Craigon, M., Corriveau, R., Ghazal, P., Horsburgh, K., Yankner, B.A., Wyllie, D.J., Ikonomidou, C., and Hardingham, G.E. (2008). Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11, 476–487

    Article  PubMed  CAS  Google Scholar 

  63. Muller, N., Riedel, M., Gruber, R., Ackenheil, M., and Schwarz, M.J. (2000). The immune system and schizophrenia. An integrative view. Ann N Y Acad Sci 917, 456–467

    Article  CAS  Google Scholar 

  64. Ganguli, R., Yang, Z., Shurin, G., Chengappa, K.N., Brar, J.S., Gubbi, A.V., and Rabin, B.S. (1994). Serum interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 51, 1–10

    Article  PubMed  CAS  Google Scholar 

  65. Naudin, J., Mege, J.L., Azorin, J.M., and Dassa, D. (1996). Elevated circulating levels of IL-6 in schizophrenia. Schizophr Res 20, 269–273

    Article  PubMed  CAS  Google Scholar 

  66. Nunes, S.O., Borelli, S.D., Matsuo, T., Watanabe, M.A., and Itano, E.N. (2005). The association of the HLA in patients with schizophrenia, schizoaffective disorder, and in their biological relatives. Schizophr Res 76, 195–198

    Article  PubMed  CAS  Google Scholar 

  67. Kudoh, A., Takase, H., Takahira, Y., Katagai, H., and Takazawa, T. (2003). Postoperative confusion in schizophrenic patients is affected by interleukin-6. J Clin Anesth 15, 455–462

    Article  PubMed  CAS  Google Scholar 

  68. Lin, A., Kenis, G., Bignotti, S., Tura, G.J., De Jong, R., Bosmans, E., Pioli, R., Altamura, C., Scharpe, S., and Maes, M. (1998). The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 32, 9–15

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, X.Y., Zhou, D.F., Zhang, P.Y., Wu, G.Y., Cao, L.Y., and Shen, Y.C. (2002). Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 57, 247–258

    Article  PubMed  Google Scholar 

  70. Goslin, K., Asmussen, H., and Banker, G. (1998). Rat hippocampal neurons in low-density culture. In Goslin, K., and Banker, G. (ed.), Culturing nerve cells, 2nd edition (London: The MIT Press), pp. 339–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Margarita Behrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Behrens, M.M. (2011). Studying Schizophrenia in a Dish: Use of Primary Neuronal Cultures to Study the Long-Term Effects of NMDA Receptor Antagonists on Parvalbumin-Positive Fast-Spiking Interneurons. In: O'Donnell, P. (eds) Animal Models of Schizophrenia and Related Disorders. Neuromethods, vol 59. Humana Press. https://doi.org/10.1007/978-1-61779-157-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-157-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-156-7

  • Online ISBN: 978-1-61779-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics