Skip to main content

Gestational MAM (Methylazoxymethanol) Administration: A Promising Animal Model for Psychosis Onset

  • Protocol
  • First Online:
Animal Models of Schizophrenia and Related Disorders

Part of the book series: Neuromethods ((NM,volume 59))

Abstract

This chapter provides an overview on exposure to methylazoxymethanol (MAM) at embryonic day 17 as a promising animal model for schizophrenia that mimics behavioral abnormalities and deficits in prefrontal cortex networks. This early insult produces in adult offspring from E17 MAM-treated dams the following: (1) behavioral changes including spontaneous hyperactivity and hypersensitivity to psychotomimetic drugs that are reminiscent of positive symptoms of schizophrenia and associated with a temporal pattern of expression; (2) impaired social interaction similar to that observed in schizophrenic patients existing prior to the onset of disease; (3) cognitive deficits in a variety of domain: working and reference memory, behavioral flexibility, attentional functioning, object recognition, and reversal learning; (4) behavioral abnormalities resembling schizophrenia-related endophenotypes like deficient sensorimotor gating and disrupted latent inhibition; (5) anatomical changes with cortical, thalamic, and hippocampal reductions in volume that are associated with an enlargement of the lateral ventricles; and (6) abnormalities in functional connectivity between brain areas that involve deficits in dopamine, glutamate, and GABA systems. The E17 MAM model that incorporates neuropathological and functional manifestations associated with schizophrenia may help forward early preventive interventions that can successfully reduce the risk of developing schizophrenia in exposed individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueser KT, McGurk SR. (2004) Schizophrenia. Lancet 363:2063–72.

    Article  PubMed  Google Scholar 

  2. Harrison PJ, Weinberger DR. (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68.

    Article  PubMed  CAS  Google Scholar 

  3. Rapoport JL, Addington AM, Frangou S, Psych MR. (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–49.

    Article  PubMed  CAS  Google Scholar 

  4. Waddington JL, Lane A, Larkin C, O’Callaghan E. (1999) The neurodevelopmental basis of schizophrenia: clinical clues from cerebro-craniofacial dysmorphogenesis, and the roots of a lifetime trajectory of disease. Biol Psychiatry 46:31–9.

    Article  PubMed  CAS  Google Scholar 

  5. Bramon E, Walshe M, McDonald C, et al. (2005) Dermatoglyphics and schizophrenia: a meta-analysis and investigation of the impact of obstetric complications upon a-b ridge count. Schizophr Res 75:399–404.

    Article  PubMed  Google Scholar 

  6. Sidman RL, Rakic P. (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35.

    Article  PubMed  CAS  Google Scholar 

  7. Fletcher P. (1998) The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci 1:266–7.

    Article  PubMed  CAS  Google Scholar 

  8. Weinberger DR, Berman KF, Suddath R, Torrey EF. (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149:890–7.

    PubMed  CAS  Google Scholar 

  9. Friston KJ. (1998) The disconnection hypothesis. Schizophr Res 30(2):115–25.

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt-Kastner R, Freund TF. (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636.

    Article  PubMed  CAS  Google Scholar 

  11. Weinberger DR. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–9.

    PubMed  CAS  Google Scholar 

  12. Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, McGuire P. (2009) Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain 132:2426–36.

    Article  PubMed  Google Scholar 

  13. Heckers S, Goff D, Schacter DL, et al. (1999) Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch Gen Psychiatry 56:1117–23.

    Article  PubMed  CAS  Google Scholar 

  14. Meyer-Lindenberg AS, Olsen RK, Kohn PD, et al. (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–86.

    Article  PubMed  Google Scholar 

  15. Zhou Y, Shu N, Liu Y, et al. (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100:120–32.

    Article  PubMed  Google Scholar 

  16. Balduini W, Lombardelli G, Peruzzi G, Cattabeni F. (1991) Treatment with methylazoxymethanol at different gestational days: physical, reflex development and spontaneous activity in the offspring. Neurotoxicology 12:179–88.

    PubMed  CAS  Google Scholar 

  17. Cattabeni F, Di Luca M. (1997) Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiol Rev 77:199–215.

    PubMed  CAS  Google Scholar 

  18. Bayer S, Altman J. (2004) Development of the telencephalon: neural stem cells, neurogenesis and neuronal migration. In: Paxinos G, ed. The rat nervous system, 3rd edition. London: Academic, pp. 27–73.

    Google Scholar 

  19. Singh SC. (1977) Ectopic neurones in the hippocampus of the postnatal rat exposed to methylazoxymethanol during foetal development. Acta Neuropathol 40:111–6.

    Article  PubMed  CAS  Google Scholar 

  20. Battaglia G, Pagliardini S, Saglietti L, et al. (2003) Neurogenesis in cerebral heterotopia induced in rats by prenatal methylazoxymethanol treatment. Cereb Cortex 13:736–48.

    Article  PubMed  Google Scholar 

  21. Colacitti C, Sancini G, DeBiasi S, et al. (1999) Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses. J Neuropathol Exp Neurol 58:92–106.

    Article  PubMed  CAS  Google Scholar 

  22. Colacitti C, Sancini G, Franceschetti S, et al. (1998) Altered connections between neocortical and heterotopic areas in methylazoxymethanol-treated rat. Epilepsy Res 32:49–62.

    Article  PubMed  CAS  Google Scholar 

  23. Sancini G, Franceschetti S, Battaglia G, et al. (1998) Dysplastic neocortex and subcortical heterotopias in methylazoxymethanol-treated rats: an intracellular study of identified pyramidal neurones. Neurosci Lett 246:181–5.

    Article  PubMed  CAS  Google Scholar 

  24. Matsumoto H, Spatz M, Laqueur GL. (1972) Quantitative changes with age in the DNA content of methylazoxymethanol-induced microencephalic rat brain. J Neurochem 19:297–306.

    Article  PubMed  CAS  Google Scholar 

  25. Rodier PM. (1986) Behavioral effects of antimitotic agents administered during neurogenesis. In: Riley EP, Vorhees CV, eds. Handbook of behavioral teratology. New York, NY: Plenum Press, pp. 185–209.

    Google Scholar 

  26. Spatz M, Dougherty WJ, Smith DW. (1967) Teratogenic effects of methylazoxymethanol. Proc Soc Exp Biol Med 124:476–8.

    PubMed  CAS  Google Scholar 

  27. Johnston MV, Coyle JT. (1979) Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res 170:135–55.

    Article  PubMed  CAS  Google Scholar 

  28. Nagata Y, Matsumoto H. (1969) Studies on methylazoxymethanol: methylation of nucleic acids in the fetal rat brain. Proc Soc Exp Biol Med 132:383–5.

    PubMed  CAS  Google Scholar 

  29. Cattaneo E, Reinach B, Caputi A, Cattabeni F, Di Luca M. (1995) Selective in vitro blockade of neuroepithelial cells proliferation by methylazoxymethanol, a molecule capable of inducing long lasting functional impairments. J Neurosci Res 41:640–7.

    Article  PubMed  CAS  Google Scholar 

  30. Featherstone RE, Rizos Z, Nobrega JN, Kapur S, Fletcher PJ. (2007) Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia. Neuropsychopharmacology 32:483–92.

    Article  PubMed  CAS  Google Scholar 

  31. Flagstad P, Glenthoj BY, Didriksen M. (2005) Cognitive deficits caused by late gestational disruption of neurogenesis in rats: a preclinical model of schizophrenia. Neuropsychopharmacology 30:250–60.

    Article  PubMed  Google Scholar 

  32. Flagstad P, Mork A, Glenthoj BY, Van Beek J, Michael-Titus AT, Didriksen M. (2004) Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 29:2052–64.

    Article  PubMed  CAS  Google Scholar 

  33. Gourevitch R, Rocher C, Le Pen G, Krebs MO, Jay TM. (2004) Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behav Pharmacol 15:287–92.

    Article  PubMed  CAS  Google Scholar 

  34. Hazane F, Krebs MO, Jay TM, Le Pen G. (2009) Behavioral perturbations after prenatal neurogenesis disturbance in female rat. Neurotox Res 15:311–20.

    Article  PubMed  Google Scholar 

  35. Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO. (2006) Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience 143:395–405.

    Article  PubMed  CAS  Google Scholar 

  36. Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. (2006) A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 60:253–64.

    Article  PubMed  CAS  Google Scholar 

  37. Penschuck S, Flagstad P, Didriksen M, Leist M, Michael-Titus AT. (2006) Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 23:279–84.

    Article  PubMed  Google Scholar 

  38. Goto Y, Grace AA. (2006) Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development. Biol Psychiatry 60:1259–67.

    Article  PubMed  Google Scholar 

  39. Lavin A, Moore HM, Grace AA. (2005) Prenatal disruption of neocortical development alters prefrontal cortical neuron responses to dopamine in adult rats. Neuropsychopharmacology 30:1426–35.

    Article  PubMed  CAS  Google Scholar 

  40. Lena I, Chessel A, Le Pen G, Krebs MO, Garcia R. (2007) Alterations in prefrontal glutamatergic and noradrenergic systems following MK-801 administration in rats prenatally exposed to methylazoxymethanol at gestational day 17. Psychopharmacology (Berl) 192:373–83.

    Article  CAS  Google Scholar 

  41. Lodge DJ, Behrens MM, Grace AA. (2009) A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 29:2344–54.

    Article  PubMed  CAS  Google Scholar 

  42. Lodge DJ, Grace AA. (2007) Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 27:11424–30.

    Article  PubMed  CAS  Google Scholar 

  43. Powell CM, Miyakawa T. (2006) Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry 59:1198–207.

    Article  PubMed  CAS  Google Scholar 

  44. Rebec GV, Grabner CP, Johnson M, Pierce RC, Bardo MT. (1997) Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience 76:707–14.

    Article  PubMed  CAS  Google Scholar 

  45. Crow TJ. (1980) Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry 137:383–6.

    PubMed  CAS  Google Scholar 

  46. Guillin O, Abi-Dargham A, Laruelle M. (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39.

    Article  PubMed  CAS  Google Scholar 

  47. Laruelle M, Abi-Dargham A. (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–71.

    Article  PubMed  CAS  Google Scholar 

  48. Arguello PA, Gogos JA. (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–96.

    Article  PubMed  CAS  Google Scholar 

  49. Angrist B, van Kammen DP. (1984) CNS stimulants as a tool to study schizophrenia. Trends Neurosci 7:388–90.

    Article  Google Scholar 

  50. Javitt DC, Zukin SR. (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–8.

    PubMed  CAS  Google Scholar 

  51. Jentsch JD, Roth RH. (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–25.

    Article  PubMed  CAS  Google Scholar 

  52. Lieberman JA, Kane JM, Alvir J. (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 91:415–33.

    Article  CAS  Google Scholar 

  53. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–9.

    PubMed  CAS  Google Scholar 

  54. Malhotra AK, Pinals DA, Adler CM, et al. (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–50.

    Article  PubMed  CAS  Google Scholar 

  55. Steinpreis RE. (1996) The behavioral and neurochemical effects of phencyclidine in humans and animals: some implications for modeling psychosis. Behav Brain Res 74:45–55.

    Article  PubMed  CAS  Google Scholar 

  56. Wolkin A, Sanfilipo M, Angrist B, et al. (1994) Acute d-amphetamine challenge in schizophrenia: effects on cerebral glucose utilization and clinical symptomatology. Biol Psychiatry 36:317–25.

    Article  PubMed  CAS  Google Scholar 

  57. Jones P, Rodgers B, Murray R, Marmot M. (1994) Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344:1398–402.

    Article  PubMed  CAS  Google Scholar 

  58. Sams-Dodd F, Lipska BK, Weinberger DR. (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl) 132:303–10.

    Article  CAS  Google Scholar 

  59. Weinberger DR, Gallhofer B. (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol 12:S29–36.

    Article  PubMed  Google Scholar 

  60. Hughes C, Kumari V, Soni W, et al. (2003) Longitudinal study of symptoms and cognitive function in chronic schizophrenia. Schizophr Res 59:137–46.

    Article  PubMed  Google Scholar 

  61. Joober R, Rouleau GA, Lal S, et al. (2002) Neuropsychological impairments in neuroleptic-responder vs. -nonresponder schizophrenic patients and healthy volunteers. Schizophr Res 53:229–38.

    Article  PubMed  Google Scholar 

  62. Sharma T. (1999) Cognitive effects of conventional and atypical antipsychotics in schizophrenia. Br J Psychiatry Suppl 44–51.

    Google Scholar 

  63. Braff DL. (1993) Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19:233–59.

    PubMed  CAS  Google Scholar 

  64. Nuechterlein KH, Dawson ME, Green MF. (1994) Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatr Scand Suppl 384:71–9.

    Article  PubMed  CAS  Google Scholar 

  65. Perry W, Braff DL. (1994) Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry 151:363–7.

    PubMed  CAS  Google Scholar 

  66. Perry W, Geyer MA, Braff DL. (1999) Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Arch Gen Psychiatry 56:277–81.

    Article  PubMed  CAS  Google Scholar 

  67. Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR. (1997) Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 54:159–65.

    PubMed  CAS  Google Scholar 

  68. Goldman-Rakic PS. (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–57.

    PubMed  CAS  Google Scholar 

  69. Silver H, Feldman P, Bilker W, Gur RC. (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1809–16.

    Article  PubMed  Google Scholar 

  70. Manoach DS. (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–98.

    Article  PubMed  Google Scholar 

  71. Floresco SB, Seamans JK, Phillips AG. (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–90.

    PubMed  CAS  Google Scholar 

  72. Fleming K, Goldberg TE, Binks S, Randolph C, Gold JM, Weinberger DR. (1997) Visuospatial working memory in patients with schizophrenia. Biol Psychiatry 41:43–9.

    Article  PubMed  CAS  Google Scholar 

  73. Packard MG, Hirsh R, White NM. (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci 9:1465–72.

    PubMed  CAS  Google Scholar 

  74. Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D. (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29:177–85.

    Article  PubMed  CAS  Google Scholar 

  75. Wall PM, Messier C. (2002) Infralimbic kappa opioid and muscarinic M1 receptor interactions in the concurrent modulation of anxiety and memory. Psychopharmacology (Berl) 160:233–44.

    Article  CAS  Google Scholar 

  76. Lalonde R. (2002) The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev 26:91–104.

    Article  PubMed  CAS  Google Scholar 

  77. van Haaren F, De Bruin JP, Heinsbroek RP, Van de Poll NE. (1985) Delayed spatial response alternation: effects of delay-interval duration and lesions of the medial prefrontal cortex on response accuracy of male and female Wistar rats. Behav Brain Res 18:41–9.

    Article  PubMed  Google Scholar 

  78. van Haaren F, van Zijderveld G, van Hest A, de Bruin JP, van Eden CG, van de Poll NE. (1988) Acquisition of conditional associations and operant delayed spatial response alternation: effects of lesions in the medial prefrontal cortex. Behav Neurosci 102:481–8.

    Article  PubMed  Google Scholar 

  79. Diamond A. (2002) Normal development of prefrontal cortex from birth to young adulthood: cognitive functions, anatomy, and biochemistry. In: Stuss D, Knight RT, eds. Principles of frontal lobe functions. Oxford: Oxford University Press, pp. 466–503.

    Chapter  Google Scholar 

  80. Keefe RS, Roitman SE, Harvey PD, et al. (1995) A pen-and-paper human analogue of a monkey prefrontal cortex activation task: spatial working memory in patients with schizophrenia. Schizophr Res 17:25–33.

    Article  PubMed  CAS  Google Scholar 

  81. Park S, Holzman PS. (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–82.

    PubMed  CAS  Google Scholar 

  82. Morris R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60.

    Article  PubMed  CAS  Google Scholar 

  83. Braff DL, Swerdlow NR. (1997) Neuroanatomy of schizophrenia. Schizophr Bull 23:509–12.

    PubMed  CAS  Google Scholar 

  84. Cornblatt BA, Erlenmeyer-Kimling L. (1985) Global attentional deviance as a marker of risk for schizophrenia: specificity and predictive validity. J Abnorm Psychol 94:470–86.

    Article  PubMed  Google Scholar 

  85. Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H. (1991) Elementary neuronal dysfunctions in schizophrenia. Schizophr Res 4:233–43.

    Article  PubMed  CAS  Google Scholar 

  86. Higashima M, Urata K, Kawasaki Y, et al. (1998) P300 and the thought disorder factor extracted by factor-analytic procedures in schizophrenia. Biol Psychiatry 44:115–20.

    Article  PubMed  CAS  Google Scholar 

  87. Nuechterlein KH, Dawson ME. (1984) Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 10:160–203.

    PubMed  CAS  Google Scholar 

  88. Strauss ME, Buchanan RW, Hale J. (1993) Relations between attentional deficits and clinical symptoms in schizophrenic outpatients. Psychiatry Res 47:205–13.

    Article  PubMed  CAS  Google Scholar 

  89. Erwin RJ, Turetsky BI, Moberg P, Gur RC, Gur RE. (1998) P50 abnormalities in schizophrenia: relationship to clinical and neuropsychological indices of attention. Schizophr Res 33:157–67.

    Article  PubMed  CAS  Google Scholar 

  90. Olincy A, Ross RG, Harris JG, et al. (2000) The P50 auditory event-evoked potential in adult attention-deficit disorder: comparison with schizophrenia. Biol Psychiatry 47:969–77.

    Article  PubMed  CAS  Google Scholar 

  91. Lubow RE, Gewirtz JC. (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117:87–103.

    Article  PubMed  CAS  Google Scholar 

  92. Swerdlow NR, Braff DL, Hartston H, Perry W, Geyer MA. (1996) Latent inhibition in schizophrenia. Schizophr Res 20:91–103.

    Article  PubMed  CAS  Google Scholar 

  93. Elvevag B, Weinberger DR, Suter JC, Goldberg TE. (2000) Continuous performance test and schizophrenia: a test of stimulus-response compatibility, working memory, response readiness, or none of the above? Am J Psychiatry 157:772–80.

    Article  PubMed  CAS  Google Scholar 

  94. Ito M, Kanno M, Mori Y, Niwa S. (1997) Attention deficits assessed by continuous performance test and span of apprehension test in Japanese schizophrenic patients. Schizophr Res 23:205–11.

    Article  PubMed  CAS  Google Scholar 

  95. Miller MB, Chapman LJ, Chapman JP, Barnett EM. (1990) Schizophrenic deficit in span of apprehension. J Abnorm Psychol 99:313–6.

    Article  PubMed  CAS  Google Scholar 

  96. Rund BR, Oie M, Zeiner P, Sundet K. (1999) Span of apprehension in adolescents with schizophrenia or ADHD. Schizophr Res 40:257–9.

    PubMed  CAS  Google Scholar 

  97. Cadenhead KS, Serper Y, Braff DL. (1998) Transient versus sustained visual channels in the visual backward masking deficits of schizophrenia patients. Biol Psychiatry 43:132–8.

    Article  PubMed  CAS  Google Scholar 

  98. Saccuzzo DP, Braff DL, Sprock J, Sudik N. (1984) The schizophrenia spectrum: a study of the relationship among the Rorschach, MMPI, and visual backward masking. J Clin Psychol 40:1288–94.

    Article  PubMed  CAS  Google Scholar 

  99. Bruder G, Kayser J, Tenke C, et al. (1999) Left temporal lobe dysfunction in schizophrenia: event-related potential and behavioral evidence from phonetic and tonal dichotic listening tasks. Arch Gen Psychiatry 56:267–76.

    Article  PubMed  CAS  Google Scholar 

  100. Wishner J, Wahl O. (1974) Dichotic listening in schizophrenia. J Consult Clin Psychol 42:538–46.

    Article  PubMed  CAS  Google Scholar 

  101. Swerdlow NR, Braff DL, Taaid N, Geyer MA. (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–54.

    PubMed  CAS  Google Scholar 

  102. Carli M, Robbins TW, Evenden JL, Everitt BJ. (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9: 361–80.

    Article  PubMed  CAS  Google Scholar 

  103. Leonard JA. (1961) Choice reaction time experiments and information theory. London: Butterworths.

    Google Scholar 

  104. Mirsky AF, Rosvold HE. (1960) The use of psychoactive drugs as a neuropsychological tool in studies of attention in man. In: Uhr I, Miller JG, eds. Drugs and behavior. New York, NY: Wiley, pp. 375–92.

    Google Scholar 

  105. Goldberg TE, Weinberger DR, Berman KF, Pliskin NH, Podd MH. (1987) Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Arch Gen Psychiatry 44:1008–14.

    PubMed  CAS  Google Scholar 

  106. Birrell JM, Brown VJ. (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4.

    PubMed  CAS  Google Scholar 

  107. McAlonan K, Brown VJ. (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103.

    Article  PubMed  Google Scholar 

  108. Dias R, Robbins TW, Roberts AC. (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–86.

    Article  PubMed  CAS  Google Scholar 

  109. Elliott R, McKenna PJ, Robbins TW, Sahakian BJ. (1995) Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 25:619–30.

    Article  PubMed  CAS  Google Scholar 

  110. Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW. (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116:1159–75.

    Article  PubMed  Google Scholar 

  111. Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW. (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–19.

    Article  PubMed  CAS  Google Scholar 

  112. Passetti F, Chudasama Y, Robbins TW. (2002) The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb Cortex 12:1254–68.

    Article  PubMed  Google Scholar 

  113. Murphy ER, Dalley JW, Robbins TW. (2005) Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology (Berl) 179:99–107.

    Article  CAS  Google Scholar 

  114. Berman KF, Zec RF, Weinberger DR. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–35.

    PubMed  CAS  Google Scholar 

  115. Goldberg TE, Weinberger DR. (1988) Probing prefrontal function in schizophrenia with neuropsychological paradigms. Schizophr Bull 14:179–83.

    PubMed  CAS  Google Scholar 

  116. Morice R. (1990) Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. Br J Psychiatry 157:50–4.

    Article  PubMed  CAS  Google Scholar 

  117. Prentice KJ, Gold JM, Buchanan RW. (2008) The Wisconsin Card Sorting impairment in schizophrenia is evident in the first four trials. Schizophr Res 106:81–7.

    Article  PubMed  Google Scholar 

  118. Jazbec S, Pantelis C, Robbins T, Weickert T, Weinberger DR, Goldberg TE. (2007) Intra-dimensional/extra-dimensional set-shifting performance in schizophrenia: impact of distractors. Schizophr Res 89: 339–49.

    Article  PubMed  Google Scholar 

  119. Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW. (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37:251–70.

    Article  PubMed  CAS  Google Scholar 

  120. Murray GK, Cheng F, Clark L, et al. (2008) Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 34: 848–55.

    Article  PubMed  CAS  Google Scholar 

  121. Waltz JA, Gold JM. (2007) Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res 93:296–303.

    Article  PubMed  Google Scholar 

  122. Chudasama Y, Robbins TW. (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–80.

    PubMed  CAS  Google Scholar 

  123. Clark L, Cools R, Robbins TW. (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53.

    Article  PubMed  CAS  Google Scholar 

  124. Kim J, Ragozzino ME. (2005) The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83:125–33.

    Article  PubMed  Google Scholar 

  125. Seidman LJ, Yurgelun-Todd D, Kremen WS, et al. (1994) Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biol Psychiatry 35:235–46.

    Article  PubMed  CAS  Google Scholar 

  126. Szeszko PR, Bilder RM, Lencz T, et al. (2000) Reduced anterior cingulate gyrus volume correlates with executive dysfunction in men with first-episode schizophrenia. Schizophr Res 43:97–108.

    Article  PubMed  CAS  Google Scholar 

  127. Tulving E. (2000) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25.

    Article  Google Scholar 

  128. Aleman A, Hijman R, de Haan EH, Kahn RS. (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156:1358–66.

    PubMed  CAS  Google Scholar 

  129. Cirillo MA, Seidman LJ. (2003) Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms. Neuropsychol Rev 13:43–77.

    Article  PubMed  Google Scholar 

  130. Goldberg TE, Gold JM. (1995) Neurocognitive deficits in schizophrenia. In: Hirsch SR, Weinberger DR, eds. Schizophrenia. Oxford: Blackwell Science, pp. 146–62.

    Google Scholar 

  131. Leavitt VM, Goldberg TE. (2009) Episodic memory in schizophrenia. Neuropsychol Rev 19:312–23.

    Article  PubMed  Google Scholar 

  132. Da Silva Costa V, Duchatelle P, Boulouard M, Dauphin F. (2009) Selective 5-HT6 receptor blockade improves spatial recognition memory and reverses age-related deficits in spatial recognition memory in the mouse. Neuropsychopharmacology 34:488–500.

    Article  PubMed  CAS  Google Scholar 

  133. Dere E, Huston JP, De Souza Silva MA. (2005) Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res Protoc 16:10–9.

    Article  Google Scholar 

  134. Dere E, Huston JP, De Souza Silva MA. (2005) Integrated memory for objects, places, and temporal order: evidence for episodic-like memory in mice. Neurobiol Learn Mem 84:214–21.

    Article  PubMed  Google Scholar 

  135. Ennaceur A, Delacour J. (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59.

    Article  PubMed  CAS  Google Scholar 

  136. Clare L, McKenna PJ, Mortimer AM, Baddeley AD. (1993) Memory in schizophrenia: what is impaired and what is preserved? Neuropsychologia 31:1225–41.

    Article  PubMed  CAS  Google Scholar 

  137. Laws KR, Leeson VC, McKenna PJ. (2006) Domain-specific deficits in schizophrenia. Cogn Neuropsychiatry 11:537–56.

    Article  PubMed  Google Scholar 

  138. Heckers S, Curran T, Goff D, et al. (2000) Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol Psychiatry 48:651–7.

    Article  PubMed  CAS  Google Scholar 

  139. Heckers S, Rauch SL, Goff D, et al. (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1:318–23.

    Article  PubMed  CAS  Google Scholar 

  140. Brebion G, David AS, Pilowsky LS, Jones H. (2004) Recognition of visual stimuli and memory for spatial context in schizophrenic patients and healthy volunteers. J Clin Exp Neuropsychol 26:1093–102.

    Article  PubMed  Google Scholar 

  141. Elvevag B, Duncan J, McKenna PJ. (2000) The use of cognitive context in schizophrenia: an investigation. Psychol Med 30:885–97.

    Article  PubMed  CAS  Google Scholar 

  142. Joyce E, Hutton S, Mutsatsa S, et al. (2002) Executive dysfunction in first-episode schizophrenia and relationship to duration of untreated psychosis: the West London Study. Br J Psychiatry Suppl 43:s38–44.

    Article  PubMed  Google Scholar 

  143. McGurk SR, Green MF, Wirshing WC, et al. (2004) Antipsychotic and anticholinergic effects on two types of spatial memory in schizophrenia. Schizophr Res 68:225–33.

    Article  PubMed  Google Scholar 

  144. O’Donnell BF, Swearer JM, Smith LT, Nestor PG, Shenton ME, McCarley RW. (1996) Selective deficits in visual perception and recognition in schizophrenia. Am J Psychiatry 153:687–92.

    PubMed  Google Scholar 

  145. Wood SJ, Proffitt T, Mahony K, et al. (2002) Visuospatial memory and learning in first-episode schizophreniform psychosis and established schizophrenia: a functional correlate of hippocampal pathology? Psychol Med 32:429–38.

    Article  PubMed  CAS  Google Scholar 

  146. Kesner RP, Dakis M. (1993) Phencyclidine disrupts acquisition and retention performance within a spatial continuous recognition memory task. Pharmacol Biochem Behav 44:419–24.

    Article  PubMed  CAS  Google Scholar 

  147. McDonald RJ, White NM. (1993) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 107:3–22.

    Article  PubMed  CAS  Google Scholar 

  148. Thinus-Blanc C, Save E, Poucet B, Foreman N. (1996) Effects of parietal cortex lesions on spatial problem solving in the rat. Behav Brain Res 81:115–21.

    Article  PubMed  CAS  Google Scholar 

  149. Akwa Y, Ladurelle N, Covey DF, Baulieu EE. (2001) The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc Natl Acad Sci USA 98:14033–7.

    Article  PubMed  CAS  Google Scholar 

  150. Dellu F, Fauchey V, Le Moal M, Simon H. (1997) Extension of a new two-trial memory task in the rat: influence of environmental context on recognition processes. Neurobiol Learn Mem 67:112–20.

    Article  PubMed  CAS  Google Scholar 

  151. Dellu F, Mayo W, Cherkaoui J, Le Moal M, Simon H. (1992) A two-trial memory task with automated recording: study in young and aged rats. Brain Res 588:132–9.

    Article  PubMed  CAS  Google Scholar 

  152. Conrad CD, Galea LA, Kuroda Y, McEwen BS. (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–34.

    Article  PubMed  CAS  Google Scholar 

  153. Cyr M, Calon F, Morissette M, Di Paolo T. (2002) Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson’s disease. J Psychiatry Neurosci 27:12–27.

    PubMed  Google Scholar 

  154. Chambers RA, Moore J, McEvoy JP, Levin ED. (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587–94.

    Article  PubMed  CAS  Google Scholar 

  155. Martin PD, Berthoz A. (2002) Development of spatial firing in the hippocampus of young rats. Hippocampus 12:465–80.

    Article  PubMed  Google Scholar 

  156. Olton DS, Becker JT, Handelmann GE. (1979) Hippocampus, space, and memory. Behav Brain Sci 2:313–65.

    Article  Google Scholar 

  157. Vorhees CV, Williams MT. (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–58.

    Article  PubMed  Google Scholar 

  158. Morris RG, Garrud P, Rawlins JN, O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–3.

    Article  PubMed  CAS  Google Scholar 

  159. Ekstrom AD, Kahana MJ, Caplan JB, et al. (2003) Cellular networks underlying human spatial navigation. Nature 425:184–8.

    Article  PubMed  CAS  Google Scholar 

  160. Burgess N, Maguire EA, O’Keefe J. (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–41.

    Article  PubMed  CAS  Google Scholar 

  161. O’Keefe J, Nadel L. (1978) The hippocampus as a cognitive map. Cambridge: Oxford University Press.

    Google Scholar 

  162. Folley BS, Astur R, Jagannathan K, Calhoun VD, Pearlson GD. (2010) Anomalous neural circuit function in schizophrenia during a virtual Morris water task. Neuroimage 49:3373–84.

    Article  PubMed  Google Scholar 

  163. Hanlon FM, Weisend MP, Hamilton DA, et al. (2006) Impairment on the hippocampal-dependent virtual Morris water task in schizophrenia. Schizophr Res 87:67–80.

    Article  PubMed  Google Scholar 

  164. Akbarian S, Sucher NJ, Bradley D, et al. (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19–30.

    PubMed  CAS  Google Scholar 

  165. Glantz LA, Lewis DA. (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73.

    Article  PubMed  CAS  Google Scholar 

  166. Weinberger DR, Berman KF, Zec RF. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–24.

    PubMed  CAS  Google Scholar 

  167. Bogerts B, Meertz E, Schonfeldt-Bausch R. (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42:784–91.

    PubMed  CAS  Google Scholar 

  168. Csernansky JG, Joshi S, Wang L, et al. (1998) Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci USA 95:11406–11.

    Article  PubMed  CAS  Google Scholar 

  169. Pilowsky LS, Bressan RA, Stone JM, et al. (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–9.

    Article  PubMed  CAS  Google Scholar 

  170. Abi-Dargham A, Gil R, Krystal J, et al. (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–7.

    PubMed  CAS  Google Scholar 

  171. Breier A, Su TP, Saunders R, et al. (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–74.

    Article  PubMed  CAS  Google Scholar 

  172. Laruelle M, Abi-Dargham A, van Dyck CH, et al. (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–40.

    Article  PubMed  CAS  Google Scholar 

  173. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169:215–33.

    Article  CAS  Google Scholar 

  174. Laruelle M, Kegeles LS, Abi-Dargham A. (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–58.

    Article  PubMed  CAS  Google Scholar 

  175. Beasley CL, Reynolds GP. (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24:349–55.

    Article  PubMed  CAS  Google Scholar 

  176. Benes FM, Berretta S. (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27.

    Article  PubMed  CAS  Google Scholar 

  177. Lewis CM, Levinson DF, Wise LH, et al. (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73:34–48.

    Article  PubMed  CAS  Google Scholar 

  178. Reynolds GP, Beasley CL. (2001) GABAergic neuronal subtypes in the human frontal cortex?development and deficits in schizophrenia. J Chem Neuroanat 22:95–100.

    Article  PubMed  CAS  Google Scholar 

  179. Reynolds GP, Zhang ZJ, Beasley CL. (2001) Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res Bull 55:579–84.

    Article  PubMed  CAS  Google Scholar 

  180. Tooney PA, Chahl LA. (2004) Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28:273–8.

    Article  PubMed  CAS  Google Scholar 

  181. Zhang ZJ, Reynolds GP. (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55:1–10.

    Article  PubMed  Google Scholar 

  182. Bertolino A, Esposito G, Callicott JH, et al. (2000) Specific relationship between prefrontal neuronal N-acetylaspartate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry 157:26–33.

    PubMed  CAS  Google Scholar 

  183. Grace AA. (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Rev 31:330–41.

    Article  PubMed  CAS  Google Scholar 

  184. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46:616–26.

    Article  PubMed  CAS  Google Scholar 

  185. Selemon LD, Goldman-Rakic PS. (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25.

    Article  PubMed  CAS  Google Scholar 

  186. Koob GF, Sanna PP, Bloom FE. (1998) Neuroscience of addiction. Neuron 21:467–76.

    Article  PubMed  CAS  Google Scholar 

  187. Tzschentke TM, Schmidt WJ. (2000) Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 14:131–42.

    PubMed  CAS  Google Scholar 

  188. Paxinos G, Watson C. (1998) The rat brain in stereotaxic coordinates, 4th ed. San Diego: Academic Press.

    Google Scholar 

  189. Adams B, Moghaddam B. (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–54.

    PubMed  CAS  Google Scholar 

  190. Harkin A, Morris K, Kelly JP, O’Donnell JM, Leonard BE. (2001) Modulation of MK-801-induced behaviour by noradrenergic agents in mice. Psychopharmacology (Berl) 154:177–88.

    Article  CAS  Google Scholar 

  191. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA. (2003) Effects of ketamine and N-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706.

    Article  PubMed  CAS  Google Scholar 

  192. Loscher W, Honack D. (1992) The behavioural effects of MK-801 in rats: involvement of dopaminergic, serotonergic and noradrenergic systems. Eur J Pharmacol 215:199–208.

    Article  PubMed  CAS  Google Scholar 

  193. Ouagazzal A, Nieoullon A, Amalric M. (1993) Effects of dopamine D1 and D2 receptor blockade on MK-801-induced hyperlocomotion in rats. Psychopharmacology (Berl) 111:427–34.

    Article  CAS  Google Scholar 

  194. Takahata R, Moghaddam B. (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–24.

    PubMed  CAS  Google Scholar 

  195. Verma A, Moghaddam B. (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–9.

    PubMed  CAS  Google Scholar 

  196. Benes FM, Khan Y, Vincent SL, Wickramasinghe R. (1996) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–49.

    Article  PubMed  CAS  Google Scholar 

  197. Reynolds GP, Czudek C, Andrews HB. (1990) Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27:1038–44.

    Article  PubMed  CAS  Google Scholar 

  198. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48:996–1001.

    PubMed  CAS  Google Scholar 

  199. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. (1999) Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 93:441–8.

    Article  PubMed  CAS  Google Scholar 

  200. Akbarian S, Kim JJ, Potkin SG, et al. (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–66.

    PubMed  CAS  Google Scholar 

  201. Hashimoto T, Volk DW, Eggan SM, et al. (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23:6315–26.

    PubMed  CAS  Google Scholar 

  202. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–45.

    Article  PubMed  CAS  Google Scholar 

  203. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS. (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97.

    Article  PubMed  CAS  Google Scholar 

  204. DeFelipe J. (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19.

    Article  PubMed  CAS  Google Scholar 

  205. Daviss SR, Lewis DA. (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59:81–96.

    Article  PubMed  CAS  Google Scholar 

  206. Cotter D, Landau S, Beasley C, et al. (2002) The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 51:377–86.

    Article  PubMed  CAS  Google Scholar 

  207. Reynolds GP, Beasley CL, Zhang ZJ. (2002) Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons. J Neural Transm 109:881–9.

    Article  PubMed  CAS  Google Scholar 

  208. Wheeler DG, Dixon G, Harper CG. (2006) No differences in calcium-binding protein immunoreactivity in the posterior cingulate and visual cortex: schizophrenia and controls. Prog Neuropsychopharmacol Biol Psychiatry 30:630–9.

    Article  PubMed  CAS  Google Scholar 

  209. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57:252–60.

    Article  PubMed  CAS  Google Scholar 

  210. Lewis DA, Hashimoto T, Volk DW. (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–24.

    Article  PubMed  CAS  Google Scholar 

  211. Woo TU, Miller JL, Lewis DA. (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154:1013–5.

    PubMed  CAS  Google Scholar 

  212. Behrens MM, Ali SS, Dao DN, et al. (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–7.

    Article  PubMed  CAS  Google Scholar 

  213. Harrison PJ. (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624.

    Google Scholar 

  214. Matricon J, Bellon A, Frieling H, et al. (2010) Neuropathological and Reelin deficiencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia. PLoS One 5:e10291.

    Article  PubMed  CAS  Google Scholar 

  215. Garey L. (2010) When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat 217(4):324–33.

    Google Scholar 

  216. Hill K, Mann L, Laws KR, Stephenson CM, Nimmo-Smith I, McKenna PJ. (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110:243–56.

    Article  PubMed  CAS  Google Scholar 

  217. Harrison PJ, Eastwood SL. (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 11:508–19.

    Article  PubMed  CAS  Google Scholar 

  218. Szeszko PR, Goldberg E, Gunduz-Bruce H, et al. (2003) Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry 160:2190–7.

    Article  PubMed  Google Scholar 

  219. Tamminga CA, Medoff DR. (2002) Studies in schizophrenia: pathophysiology and treatment. Dialogues Clin Neurosci 4:432–7.

    Google Scholar 

  220. Tamminga CA, Vogel M, Gao X, Lahti AC, Holcomb HH. (2000) The limbic cortex in schizophrenia: focus on the anterior cingulate. Brain Res Brain Res Rev 31:364–70.

    Article  PubMed  CAS  Google Scholar 

  221. Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P. (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse M. Jay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Le Pen, G., Bellon, A., Krebs, MO., Jay, T.M. (2011). Gestational MAM (Methylazoxymethanol) Administration: A Promising Animal Model for Psychosis Onset. In: O'Donnell, P. (eds) Animal Models of Schizophrenia and Related Disorders. Neuromethods, vol 59. Humana Press. https://doi.org/10.1007/978-1-61779-157-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-157-4_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-156-7

  • Online ISBN: 978-1-61779-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics