Skip to main content

A Transposon-Based Activation Tagging System for Gene Function Discovery in Arabidopsis

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 754))

Abstract

Activation tagging is a powerful strategy to find new gene functions, especially from genes that are redundant or show lethal knock-out phenotypes. It has been applied using T-DNA or transposons. En/Spm-I/dSpm engineered transposons are efficient activation tags in Arabidopsis. An immobilized transposase source and an enhancer-bearing non-autonomous element are used in combination with positive and negative selectable markers to generate a population of single- or low-copy, stable insertions. This method describes the steps required for selection of parental lines, generation of a population of stable insertions, and gene identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Initiative, T. A. G. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  2. Bouché, N. and Bouchez, D. (2001) Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4, 111–117.

    Article  PubMed  Google Scholar 

  3. Kuromori, T., Wada, T., Kamiya, A., Yuguchi, M., Yokouchi, T., Imura, Y., Takabe, H., Sakurai, T., Akiyama, K., Hirayama, T., Okada, K., and Shinozaki, K. (2006) A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J. 47, 640–651.

    Article  PubMed  CAS  Google Scholar 

  4. Walden, R. F. K., Hayashi, H., Miklashevichs, E., Harling, H., and Schell, J. (1994) Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol. Biol. 26, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  5. Lewin, B. (ed.) (2008) Genes IX, Jones and Bartlett Publishers, Sudbury, MA, USA.

    Google Scholar 

  6. Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394.

    Article  PubMed  CAS  Google Scholar 

  7. Borghi, L., Bureau, M., and Simon, R. (2007) Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19, 1795–1808.

    Article  PubMed  CAS  Google Scholar 

  8. Kirch, T., Simon, R., Grunewald, M., and Werr, W. (2003) The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. Plant Cell 15, 694–705.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J. H., Kim, S.-G., Lee, J. S., Kwon, Y. M., and Lee, I. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366–2376.

    Article  PubMed  CAS  Google Scholar 

  10. Trigueros, M., Navarrete-Gomez, M., Sato, S., Christensen, S. K., Pelaz, S., Weigel, D., Yanofsky, M. F., and Ferrandiz, C. (2009) The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 21, 1394–1409.

    Article  PubMed  CAS  Google Scholar 

  11. van der Graaff, E., Dulk-Ras, A. D., Hooykaas, P. J., and Keller, B. (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127, 4971–4980.

    PubMed  Google Scholar 

  12. Zuo, J., Niu, Q.-W., Frugis, G., and Chua, N.-H. (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–359.

    Article  PubMed  CAS  Google Scholar 

  13. Mathews, H., Clendennen, S. K., Caldwell, C. G., Liu, X. L., Connors, K., Matheis, N., Schuster, D. K., Menasco, D. J., Wagoner, W., Lightner, J., and Wagner, D. R. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689–1703.

    Article  PubMed  CAS  Google Scholar 

  14. Marsch-Martínez, N., Greco, R., Becker, J. D., Dixit, S., Bergervoet, J. H. W., Karaba, A., de Folter, S., and Pereira, A. (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol. Biol. 62, 825–843.

    Article  PubMed  Google Scholar 

  15. van der Fits, L. and Memelink, J. (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297.

    Article  PubMed  Google Scholar 

  16. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480.

    Article  PubMed  CAS  Google Scholar 

  17. Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K. R., Marsch-Martinez, N., Krishnan, A., Nataraja, K. N., Udayakumar, M., and Pereira, A. (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc. Natl. Acad. Sci. USA 104, 15270–15275.

    Article  PubMed  CAS  Google Scholar 

  18. Wilson, K. L. D., Swinburne, K., and Coupland, G. (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8, 659–671.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider, A., Kirch, T., Gigolashvili, T., Mock, H.-P., Sonnewald, U., Simon, R., Flügge, U.-I., and Werr, W. (2005) A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Lett. 579, 4622–4628.

    Article  PubMed  CAS  Google Scholar 

  20. Chalfun-Junior, A., Franken, J., Mes, J. J., Marsch-Martinez, N., Pereira, A., and Angenent, G. C. (2005) ASYMMETRIC LEAVES2-LIKE1gene, a member of the AS2/LOB family, controls proximal–distal patterning in Arabidopsis petals. Plant Mol. Biol. 57, 559–575.

    Article  PubMed  CAS  Google Scholar 

  21. Huang, S., Cerny, R. E., Bhat, D. S., and Brown, S. M. (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol. 125, 573–584.

    Article  PubMed  CAS  Google Scholar 

  22. Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985.

    Article  PubMed  CAS  Google Scholar 

  23. Ito, T. and Meyerowitz, E. (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12, 1541–1551.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D., and Chory, J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309.

    Article  PubMed  CAS  Google Scholar 

  25. Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., and Weigel, D. (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257–263.

    Article  PubMed  CAS  Google Scholar 

  26. Busov, V. B., Meilan, R., Pearce, D. W., Ma, C., Rood, S. B., and Strauss, S. H. (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol. 132, 1283–1291.

    Article  PubMed  CAS  Google Scholar 

  27. Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., Chory, J., Harrison, M. J., and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science 286, 1962–1965.

    Article  PubMed  CAS  Google Scholar 

  28. Zubko, E., Adams, C. J., Machaekova, I., Malbeck, J., Scollan, C., and Meyer, P. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J. 29, 797–808.

    Article  PubMed  CAS  Google Scholar 

  29. Neff, M. N. S., Malancharuvil, E. J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., and Chory, J. (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 15316–15323.

    Article  PubMed  CAS  Google Scholar 

  30. He, Z., Wang, Z.-Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363.

    Article  PubMed  CAS  Google Scholar 

  31. Li, J., Lease, K. A., Tax, F. E., and Walker, J. C. (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 5916–5921.

    Article  PubMed  CAS  Google Scholar 

  32. Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E., and Walker, J. C. (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222.

    Article  PubMed  CAS  Google Scholar 

  33. Odell, J. T., Nagy, F., and Chua, N.-H. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812.

    Article  PubMed  CAS  Google Scholar 

  34. Weigel, D., Ahn, J. H., Blazquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E. J., Neff, M. M., Nguyen, J. T., Sato, S., Wang, Z.-Y., Xia, Y., Dixon, R. A., Harrison, M. J., Lamb, C. J., Yanofsky, M. F., and Chory, J. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  35. Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L., and Pereira, A. (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol. 129, 1544–1556.

    Article  PubMed  CAS  Google Scholar 

  36. Ayliffe, M. A. and Pryor, A. J. (2009) Transposon-based activation tagging in cereals. Funct. Plant Biol. 36, 915–921.

    Article  CAS  Google Scholar 

  37. Ayliffe, M. A., Pallotta, M., Langridge, P., and Pryor, A. J. (2007) A barley activation tagging system. Plant Mol. Biol. 64, 329–347.

    Article  PubMed  CAS  Google Scholar 

  38. Wan, S., Wu, J., Zhang, Z., Sun, X., Lv, Y., Gao, C., Ning, Y., Ma, J., Guo, Y., Zhang, Q., Zheng, X., Zhang, C., Ma, Z., and Lu, T. (2009) Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol. Biol. 69, 69–80.

    Article  PubMed  CAS  Google Scholar 

  39. Robinson, S., Tang, L., Mooney, B., McKay, S., Clarke, W., Links, M., Karcz, S., Regan, S., Wu, Y.-Y., Gruber, M., Cui, D., Yu, M., and Parkin, I. (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol. 9, 101.

    Article  PubMed  Google Scholar 

  40. Kuromori, T., Takahashi, S., Kondou, Y., Shinozaki, K., and Matsui, M. (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol. 50, 1215–1231.

    Article  PubMed  CAS  Google Scholar 

  41. Jeong, D.-H., An, S., Kang, H.-G., Moon, S., Han, J.-J., Park, S., Lee, H. S., An, K., and An, G. (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636–1644.

    Article  PubMed  CAS  Google Scholar 

  42. Qu, S., Desai, A., Wing, R., and Sundaresan, V. (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol. 146, 189–199.

    Article  PubMed  CAS  Google Scholar 

  43. Chalfun-Junior, A., Mes, J., Mlynárová, L., Aarts, M., and GC, A. (2003) Low frequency of T-DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35S enhancer sequences. FEBS Lett. 555, 459–463.

    Google Scholar 

  44. Pereira, A. (2000) A transgenic perspective on plant functional genomics. Transgenic Res. 9, 245–260.

    Article  PubMed  CAS  Google Scholar 

  45. Aarts, M. G., Corzaan, P., Stiekema, W. J., and Pereira, A. (1995) A two-element enhancer-inhibitor transposon system in Arabidopsis thaliana. Mol. Gen. Genet. 247, 555–564.

    Article  PubMed  CAS  Google Scholar 

  46. Bancroft, I. and Dean, C. (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134, 1221–1229.

    PubMed  CAS  Google Scholar 

  47. Matsuhara, S., Jingu, F., Takahashi, T., and Komeda, Y. (2000) Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J. 22, 79–86.

    Article  PubMed  CAS  Google Scholar 

  48. Zuo, J., Niu, Q.-W., and Chua, N.-H. (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273.

    Article  PubMed  CAS  Google Scholar 

  49. Lawson, E. J. R., Scofield, S. R., Sjodin, C., Jones, J. D. G., and Dean, C. (1994) Modification of the 5′ untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. Mol. Gen. Genet. 245, 608–615.

    Article  PubMed  CAS  Google Scholar 

  50. Banks, J. A., Masson, P., and Fedoroff, N. (1988) Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 2, 1364–1380.

    Article  PubMed  CAS  Google Scholar 

  51. Tissier, A. F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M. A., Murphy, G., and Jones, J. D. (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 1841–1852.

    Article  PubMed  CAS  Google Scholar 

  52. De Block, M., Botterman, J., Vanderwiele, M., Dockx, J., Thoen, C., Gossele, V., Movva, R. N., Thompson, C., Van Montagu, M., and Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518.

    PubMed  CAS  Google Scholar 

  53. Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., and Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6, 2519–2523.

    PubMed  CAS  Google Scholar 

  54. O’Keefe, D. P., Tepperman, J. M., Dean, C., Leto, K. J., Erbes, D. L., and Odell, J. T. (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105, 473–482.

    PubMed  Google Scholar 

  55. Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  56. Liu, Y. G. and Whittier, R. F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681.

    Article  PubMed  CAS  Google Scholar 

  57. Tsugeki, R., Kochieva, E. Z., and Fedoroff, N. V. (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10, 479–489.

    Article  PubMed  CAS  Google Scholar 

  58. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  59. Pereira, A. and Aarts, M. G. M. (1998) Transposon tagging with the En-I system. in “Arabidopsis Protocols” (Martinez-Zapater, J., and Salinas, J., Eds.), Methods in Molecular Biology, Vol. 82, pp. 329–338, Humana Press Inc., Totowa, NJ.

    Google Scholar 

  60. Balzergue, S., Dubreucq, B., Chauvin, S., Le-Clainche, I., Le Boulaire, F., de Rose, R., Samson, F., Biaudet, V., Lecharny, A., Cruaud, C., Weissenbach, J., Caboche, M., and Lepiniec, L. (2001) Improved PCR-walking for large-scale isolation of plant T-DNA borders. Biotechniques 30, 496–498, 502, 504.

    PubMed  CAS  Google Scholar 

  61. van der Graaff, E., Hooykaas, P. J. J., and Keller, B. (2002) Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J. 32, 819–830.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayelli Marsch-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marsch-Martínez, N. (2011). A Transposon-Based Activation Tagging System for Gene Function Discovery in Arabidopsis . In: Yuan, L., Perry, S. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 754. Humana Press. https://doi.org/10.1007/978-1-61779-154-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-154-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-153-6

  • Online ISBN: 978-1-61779-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics