Skip to main content

SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a Powerful Tool for Deciphering the Protein–DNA Interaction Space

  • Protocol
  • First Online:
Book cover Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 754))

Abstract

DNA-binding proteins, including transcription factors, play essential roles in many biological processes. The identification of the DNA sequences to which these proteins bind is a first, yet still challenging, step for determining their functions. SELEX provides an excellent tool for deciphering protein DNA-binding sequence specificity, and it has been widely adopted for addressing fundamental biological questions (1, 2). SELEX is an experimental procedure that involves the progressive selection, from a large combinatorial double-stranded oligonucleotide library, of DNA ligands with variable DNA-binding affinities and specificities by repeated rounds of partition and amplification. In this chapter, we describe a SELEX protocol that we have successfully applied to both plant and animal MYB transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng, E. W., Shima, D. T., Calias, P., Cunningham, E. T., Jr., Guyer, D. R., and Adamis, A. P. (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132.

    Article  PubMed  CAS  Google Scholar 

  2. Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  3. Essers, J., Vermeulen, W., and Houtsmuller, A. B. (2006) DNA damage repair: anytime, anywhere? Curr. Opin. Cell Biol. 18, 240–246.

    Article  PubMed  CAS  Google Scholar 

  4. Sarai, A., and Kono, H. (2005) Protein-DNA recognition patterns and predictions. Annu. Rev. Biophys. Biomol. Struct. 34, 379–398.

    Article  PubMed  CAS  Google Scholar 

  5. Dervan, P. B. (1986) Design of sequence-specific DNA-binding molecules. Science 232, 464–471.

    Article  PubMed  CAS  Google Scholar 

  6. Matthews, B. W. (1988) Protein-DNA interaction. No code for recognition. Nature 335, 294–295.

    Article  PubMed  CAS  Google Scholar 

  7. Persikov, A. V., Osada, R., and Singh, M. (2009) Predicting DNA recognition by Cys2His2 zinc finger proteins. Bioinformatics 25, 22–29.

    Article  PubMed  CAS  Google Scholar 

  8. Collas, P., and Dahl, J. A. (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci. 13, 929–943.

    Article  PubMed  CAS  Google Scholar 

  9. Grotewold, E., and Springer, N. (2009) Decoding the transcriptional hardwiring of the plant genome. In Annual Plant Reviews: Systems Biology. Coruzzi, G., and Guttierrez, R. (eds), Blackwell Publishing, Oxford, UK, vol. 35, pp. 196–227.

    Google Scholar 

  10. Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., and Stam, M. (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 11.

    Article  PubMed  Google Scholar 

  11. Yang, Y., Yang, D., Schluesener, H. J., and Zhang, Z. (2007) Advances in SELEX and application of aptamers in the central nervous system. Biomol. Eng. 24, 583–592.

    Article  PubMed  CAS  Google Scholar 

  12. Ellington, A. D., and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  13. Stoltenburg, R., Reinemann, C., and Strehlitz, B. (2007) SELEX–a (r)evolut-ionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403.

    Article  PubMed  CAS  Google Scholar 

  14. Jayasena, S. D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628–1650.

    PubMed  CAS  Google Scholar 

  15. Djordjevic, M. (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol. Eng. 24, 179–189.

    Article  PubMed  CAS  Google Scholar 

  16. Gopinath, S. C. (2007) Methods developed for SELEX. Anal. Bioanal. Chem. 387, 171–182.

    Article  PubMed  CAS  Google Scholar 

  17. Grotewold, E., Drummond, B. J., Bowen, B., and Peterson, T. (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76, 543–553.

    Article  PubMed  CAS  Google Scholar 

  18. Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993) Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res. 21, 4769–4776.

    Article  PubMed  CAS  Google Scholar 

  19. Nole-Wilson, S., and Krizek, B. A. (2000) DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res. 28, 4076–4082.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support in the Grotewold lab for projects involving regulation of gene expression is provided by NRI Grant 2007-35318-17805 from the USDA CSREES, DOE Grant DE-FG02-07ER15881, and NSF grant DBI-0701405. ZX was supported by a 1-year predoctoral Excellence in Plant Molecular Biology & Biotechnology fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Grotewold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chai, C., Xie, Z., Grotewold, E. (2011). SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a Powerful Tool for Deciphering the Protein–DNA Interaction Space. In: Yuan, L., Perry, S. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 754. Humana Press. https://doi.org/10.1007/978-1-61779-154-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-154-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-153-6

  • Online ISBN: 978-1-61779-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics