Skip to main content

Covalent Conjugation of Poly(Ethylene Glycol) to Proteins and Peptides: Strategies and Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

PEGylation, the covalent linking of PEG chains, has become the leading drug delivery approach for proteins. This technique initiated its first steps almost 40 years ago, and since then, a variety of methods and strategies for protein–polymer coupling have been devised. PEGylation can give a number of relevant advantages to the conjugated protein, such as an important in vivo half-life prolongation, a reduction or an abolishment of immunogenicity, and a reduction of aggregation. Furthermore, the technique has demonstrated a great degree of versatility and efficacy – not only PEG–protein conjugates have reached the commercial marketplace (with nine types of derivatives), but a PEG-aptamer and PEGylated liposomes are now also available. Most of this success is due to the development of several PEGylation strategies and to the large selection of PEGylating agents presently at hand for researchers. Nevertheless, this technique still requires a certain level of familiarity and knowledge in order to achieve a positive outcome for a PEGylation project. To draw general guidelines for conducting PEGylation studies is not always easy or even possible because such experiments often require case-by-case optimization. On the other hand, several common methods can be used as starting examples for the development of tailor-made coupling conditions. Therefore, this chapter aims to provide a basic introduction to a wide range of PEGylation procedures for those researchers who may not be familiar with this field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abuchoswki, A., Van, E., Palczuk, N.C., et al. (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581.

    Google Scholar 

  2. Jevševar, S., Kunstelj, M., Gaberc Porekar, V. (2010) PEGylation of therapeutic proteins. J. Biotechnol. 5, 113–128.

    Google Scholar 

  3. Mero, A., Veronese, F.M. (2008) The impact of PEGylation on biological therapies Biodrugs 22, 315–329.

    Google Scholar 

  4. Zalipsky, S. (1995) Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug. Chem. 6, 150–165.

    Google Scholar 

  5. Veronese, F.M. (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22, 405–417.

    Google Scholar 

  6. Snyder, S. L. and Sobocinski, P. Z. (1975) An improved 2,4,6,-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem. 64, 284–288.

    Google Scholar 

  7. Riddles, P.W., Blakeley, R. L., and Zarner, B. (1979) Ellman’s reagent: 5,5’-dithiobis(2-nitrobenzoic acid) a reexaminatio. Anal. Biochem. 94, 75–81.

    Google Scholar 

  8. www.laysanbio.com

  9. Hanton, S. D. (2001) Mass spectrometry of polymers and polymer surfaces. Chem. Rev. 101, 527–570.

    Google Scholar 

  10. Vestling, M. M., Murphy, C. M., Fenselau, C., Dedinas, J., Doleman, M. S., Harrsch, P. B., Kutny, R., Ladd, D. L., and Olsen, M. A. (1992) Techniques in Protein Chemistry III, Academic Press, New York, pp. 477–485.

    Google Scholar 

  11. Vestling, M. M., Murphy, C. M., Keller, D. A., Fenselau, C., Dedinas, J., Ladd, D. L., and Olsen, M. A. (1993) A strategy for character­ization of polyethylene glycol-derivatized proteins: a mass spectrometric analysis of the attachment sites in polyethylene glycol-derivatized superoxide dismutase. Drug Metab. Dispos. 21, 911–917.

    Google Scholar 

  12. Montaudo, G., Samperi, F., Montaudo, M. S. (2006) Characterization of synthetic polymers by MALDI-MS. Prog. Polym. Sci. 10, 1016–1020.

    Google Scholar 

  13. Zhang H., Zhang, J., Luo, Y., Wilson, J., and Miller, K. (2007) Mass spectrometric analyses of potential impurities in 20 kDa monomethoxy poly (ethylene glycol)-propionaldehyde (PEG aldehyde) raw material. AAPS Annual Meeting & Exposition.

    Google Scholar 

  14. Sivakolundu, S. G., and Mabrouk, P. A. (2003) Proton NMR study of chemically modified horse heart ferricytochrome C confirms the presence of histidine and lysine-ligated conformers in 30% acetonitrile solution. J. Inorg. Biochem. 94, 381–385.

    Google Scholar 

  15. Orsatti, L. and Veronese, F. M. (1999) An unusual coupling of poly(ethylene glycol) to tyrosine residues in epidermal growth factor. J. Bioact. Compat. Pol. 14, 429–436.

    Google Scholar 

  16. Wylie, D. C., Voloch, M., Lee, S., Liu, Y. H., Cannon-Carlson, S., Cutler, C., Pramanik, B. (2001) Carboxyalkylated histidine is a pH-dependent product of PEGylation with SC-PEG. Pharm Res. 18, 1354–1360.

    Google Scholar 

  17. Kinstler, O. B., Brems, D. N., Lauren, S. L., Paige, A. G., Hamburger, J. B. and Treuheit, M. J. (1996) Charecterization and stability of N-Terminally PEGylated rhG-CSF. Pharm. Res. 13, 996–1002.

    Google Scholar 

  18. Lee, H., Jang, I. H., Ryu, S. H., and Pack, T.G. (2003) N-Terminal site-specific mono-PEGylation of epidermal growth factor. Pharm. Res. 20, 818–825.

    Google Scholar 

  19. Kinstler, O., Molineux, G., Treuheit, M., Ladd, D. et al. (2002) Mono-N-terminal poly(ethyleneglycol)-protein conjugates. Adv. Drug Deliv. Rev. 54, 477–485.

    Google Scholar 

  20. Arakawa, T., Prestrelski, S. J., Narhi, L. O., Boone, T. C., Kenney, W. C. (1993) Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed. J. Protein Chem. 12, 525–531.

    Google Scholar 

  21. Colonna, C., Conti, B., Perugini, P., Pavanetto, F., Modena, T., Dorati, R., Iadarola, P., Genta, I. (2008) Site-directed PEGylation as successful approach to improve the enzyme replacement in the case of prolidase. Int. J. Pharm. 24, 230–237.

    Google Scholar 

  22. Xian-Hui, H., Pang-Chui, S., Li-Hui, X., and Siu-Cheung, T. (1999) Site-directed polyethylene glycol modification of trichosanthin: Effects on its biological activities, pharmacokinetics, and antigenicity. Life Sic. 64, 1163–1175.

    Google Scholar 

  23. Balan, S., Choi, J., Godwin, A., Teo, I., Laborde, C. M., Heidelberger, S., Zloh, M., Shaunak, S., and Brocchini, S. (2007) Site-Specific PEGylation of Protein Disulfide Bonds Using a Three-Carbon Bridge. Bioconjug. Chem. 18, 61–76.

    Google Scholar 

  24. Zalipsky, S., and Meno-Rudolph, S. (1997) Hydrazide derivatives of polyethylene glycol and their bioconjugates. In Polyethylene glycol chemistry and biological applications, ACS symposium series 680 (Harris, J. M., and Zalipsky, S. eds.), pp. 318–341.

    Google Scholar 

  25. Gaertner, H. F., and Offord, R. E. (1996) Site-Specific Attachment of Functionalized Poly(ethylene glycol) to the Amino Terminus of Proteins. Bioconjug. Chem. 7, 38–44.

    Google Scholar 

  26. Baudys, M., Uchio, T., Mix, D., Wilson, D., and Kim, S. W. (1995) Physical stabilization of insulin by glycosylation. J. Pharm. Sci. 84, 28–33.

    Google Scholar 

  27. Esposito, P., Barbero, L., Caccia, P., Caliceti, P., D’Antonio, M., Piquet, G., Veronese, F. M. (2003) PEGylation of growth hormone-releasing hormone (GRF) analogues. Adv. Drug Del. Rev. 55, 1279–1291

    Google Scholar 

  28. Veronese, F. M., Mero, A., Caboi, F., Sergi, M., Marongiu, C., and Pasut, G. (2007) Site-Specific PEGylation of G-CSF by Reversible Denaturation. Bioconjug. Chem. 18, 1824–1830.

    Google Scholar 

  29. Morpurgo, M., Monfardini, C., Hofland, L. J., Sergi, M., Orsolini, P., Dumont, J. M., and Veronese, F. M. (2002) Selective Alkylation and Acylation of α and ε Amino Groups with PEG in a Somatostatin Analogue: Tailored Chemistry for Optimized Bioconjugates. Bioconjug. Chem. 13, 1238–1243.

    Google Scholar 

  30. Youn, Y. S., Na, D. H., Lee, K. C. (2007) High-yield production of biologically active mono-PEGylated salmon calcitonin by site-specific PEGylation. J. Control Release 117, 371–379.

    Google Scholar 

  31. Chae, S. Y., J., C. H., Shin, H. J., Youn, Y. S., Lee, S., Lee, K.C. (2008) Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconjug. Chem. 19, 334–341.

    Google Scholar 

  32. Sato, H. (2002) Enzymatic procedure for site-specific PEGylation. Adv. Drug Delivery. Rev. 54, 487–504.

    Google Scholar 

  33. Fontana, A., Spolaore, B., Mero, A., and Veronese, F. M. (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv. Drug Delivery Rev. 60, 13–28.

    Google Scholar 

  34. Li, N., Ziegemeier, D., Bass, L., Wang, W. (2008) Quantitation of free polyethylene glycol in PEGylated protein conjugate by size exclusion HPLC with refractive index (RI) detection. J. Pharm Biomed Anal. 48, 1332–1338.

    Google Scholar 

  35. Sims, G. E., and Snape, T. J. (1980) A method for the estimation of polyethylene glycol in plasma protein fractions. Anal. Biochem. 107, 60–63.

    Google Scholar 

  36. Seely, J. E., Richey, C. W. (2001) Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins. J. Chromatogr. A 908, 235–241.

    Google Scholar 

  37. Seely, J. E., Buckel, S. D., Green, P. D., Richey, C. W. (2005) Making site-specific PEGylation work. Biopharm Int. 18, 30–35.

    Google Scholar 

  38. Wang, Y. S., Youngster, S., Bausch, J., Zhang, R., McNemar, C., Wyss, D. F. (2000) Identification of the major positional isomer of pegylated interferon alpha-2b. Biochemistry 39, 10634–10640.

    Google Scholar 

  39. Fee, C. J., Van Alstine, J. M. (2006) PEG-proteins: Reaction engineering and separation issues. Chem. Eng. Sci. 61, 924–939.

    Google Scholar 

  40. Pabst, T. M., Buckley, J. J., Ramasubramanyan, N., Hunter, A. K. (2007) Comparison of strong anion-exchangers for the purification of a PEGylated protein. J. Chromatogr. A 1147, 172–182.

    Google Scholar 

  41. Park, E. J., Lee, K. C, Na, D. H. (2009) Separation of positional isomers of mono-poly(ethylene glycol)-modified octreotides by reversed-phase high-performance liquid chromatography. J Chromatogr. A 6, 7793–7797.

    Google Scholar 

  42. Clark, R., Olson, K., Fuh, G., Mariani, M., Mortensen, D., Teshima, G., Chang, S., Chu, H., Mukku, V., Canova-Davis, E., Somers, T., Cronin, M., Winkler, M., and Wells, J. A. (1996) Long-acting Growth Hormones Produced by Conjugation with Polyethylene Glycol. J. Biol. Chem. 271, 21969–21977.

    Google Scholar 

  43. Foser, S., Schacher, A., Weyer, K. A., Brugger, D., et al. (2003) Isolation, structural characterization, and antiviral activity of positional isomers of monopegylated interferon alpha-2a (PEGASYS). Protein Expr. Purif. 30, 78–87.

    Google Scholar 

  44. Gaberc-Porekar, V., Zore, I., Podobnik, B., Menart,V. (2008) Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr. Opin. Drug Discov. Devel. 11, 242–250.

    Google Scholar 

  45. Piedmonte, D. M., Treuheit, M. J. (2008) Formulation of Neulasta(R) (pegfilgrastim). Adv. Drug Del. Rev. 60, 50–58.

    Google Scholar 

  46. Fee, C. J (2007) Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules. Biotechnol Bioeng. 98, 725–731.

    Google Scholar 

  47. Edwards, C. K., Martin, S. W., Seely, J., Kinstler, O. et al. (2003) Design of PEGylated soluble tumor necrosis factor receptor type I (PEG sTNF-RI) for chronic inflammatory diseases. Adv. Drug Deliv. Rev. 55, 1315–1336.

    Google Scholar 

  48. Molek, J. R., Zydney, A. L. (2006) Ultrafiltration characteristics of pegylated proteins. Biotechnol. Bioeng. 95, 474–482.

    Google Scholar 

  49. Kwon, B., Molek, J., Zydney, A. L. (2008) Ultrafiltration of PEGylated proteins: Fouling and concentration polarization effects. J. Memb. Sci. 319, 206–213.

    Google Scholar 

  50. Habeeb, A. F. S. A. (1966) Determination of free amino groups in protein by trinitrobenzenesulphonic acid. Anal.Biochem. 14, 328–336.

    Google Scholar 

  51. Riddles, P. W., Blakeley, R. L., and Zarner, B. (1983) Reassessment of Ellman’s reagent. Methods Enzymol. 91, 49–60.

    Google Scholar 

  52. Jiskoot, W., Crommelin, D. (2005) Methods for Structural Analysis of Protein Pharmace­uticals Biotechnology: Pharmaceutical Aspects. American Assoc. of Pharm. Scientists, Springer, New York.

    Google Scholar 

  53. www.piercenet.com

  54. Kusterle, M., Jevsevar, S., Gaberc-Porekar, V. (2008) Size of Pegylated Protein Conjugates Studied by Various Methods. Acta Chim. Slov. 55, 594–601.

    Google Scholar 

  55. Piedmonte, D. M., Treuheit, M. J. (2008) Formulation of Neulasta(R) (pegfilgrastim). Adv. Drug Del. Rev. 60, 50–58.

    Google Scholar 

  56. Lee, K., Moon, S. C., Park, M. O., Lee, J. T., Na, D. H., Yoo, S. D., et al. (1999) Isolation, characterizasion, and stability of positional isomers of mono-PEGylated salmon calcitonins. Pharm. Res. 16, 813–818.

    Google Scholar 

  57. Manjula, B. N., Tsai, A., Upadhya, R., Perumalsamy, K., Smith, P. K., Malavalli, A., Vandegriff, K. R., Winslow, M., Intaglietta, M., Prabhakaran, M., Friedman, J. M., and Acharya A. S. (2003) Site-Specific PEGylation of Hemoglobin at Cys-93(β): Correlation between the Colligative Properties of the PEGylated Protein and the Length of the Conjugated PEG Chain. Bioconjug. Chem. 14, 464–472.

    Article  PubMed  CAS  Google Scholar 

  58. Fee, C. J., Van Alstine, J. M. (2004) Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug. Chem. 15, 1304–1313.

    Article  PubMed  CAS  Google Scholar 

  59. Kurfurst, M. M. (1992) Detection and Molecular-Weight Determination of Polyethylene Glycol-Modified Hirudin by Staining After Sodium Dodecyl-Sulfate Polyacrylamide-Gel Electrophoresis. Anal. Biochem. 200, 244–248.

    Article  PubMed  CAS  Google Scholar 

  60. Caccia, D., Ronda, L., Frassi, R., Perrella, M., Del Bavero, E., Bruno, S., Pioselli, B., Abbruzzetti, S., Viappiani, C., and Mozzarelli A. (2009) PEGylation Promotes Hemoglobin Tetramer Dissociation. Bioconjug. Chem. 20, 1356–1366.

    Google Scholar 

  61. Caserman, S., Kusterle, M., Kunstelj, M., Milunovic, T. et al. (2009) Correlations between in vitro potency of polyethylene glycol-protein conjugates and their chromatographic behaviour. Anal. Biochem. 389, 27–31.

    Article  PubMed  CAS  Google Scholar 

  62. Cindric, M., Cepo, T., Galic, N., Bukvic-Krajacic, M. et al. (2007) Structural characterization of PEGylated rHuG-CSF and location of PEG attachment sites. J. Pharm. Biomed. Anal. 44, 388–395.

    Article  PubMed  CAS  Google Scholar 

  63. Mero, A., Spolaore, B., Veronese, F. M., and Fontana, A. (2009) Transglutaminase-Mediated PEGylation of Proteins: Direct Identification by Mass Spectrometry Using a Novel Monodisperse PEG. Bioconjug. Chem. 20, 384–389.

    Article  PubMed  CAS  Google Scholar 

  64. Sergi, M., Caboi, F., Maullu, C., Orsini, G., and Tonon, G. (2009) Enzymatic techniques for PEGylation of biopharmaceuticals. In PEGylated Protein Drugs: Basic Science and Clinical Applications (Milestones in Drug Therapy) (Veronese, F.M., ed.) Birkhauser Verlag, Boston, MA, pp. 75–88.

    Google Scholar 

  65. Basu, A., Yang, K., Wang, M., Liu, S., et al. (2006) Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug. Chem. 17, 618–30.

    Article  PubMed  CAS  Google Scholar 

  66. Stoscheck, C. M. (1990) Quantification of protein. Methods Enzymol. 182, 50–69.

    Article  PubMed  CAS  Google Scholar 

  67. Yu, P., Zheng, C., Chen, J., Zhang, et al. (2007) Investigation on PEGylation strategy of recombinant human interleukin-1 receptor antagonist. Bioorg. Med. Chem. 15, 5396–405.

    Google Scholar 

  68. Monfardini, C., Schiavon, O., Caliceti, P., Morpurgo, M., Harris, J. M., and Veronese, F. M. (1995) A branched mono­methoxypoly(ethylen glicol) for protein modification. Bioconjug. Chem. 6, 62–69.

    Article  PubMed  CAS  Google Scholar 

  69. Bailon, P., Palleroni, A., Schaffer, C. A., Spence, C. L. et al. (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12, 195–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pasut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mero, A., Clementi, C., Veronese, F.M., Pasut, G. (2011). Covalent Conjugation of Poly(Ethylene Glycol) to Proteins and Peptides: Strategies and Methods. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics