Skip to main content

Single-Step Conjugation of Antibodies to Quantum Dots for Labeling Cell Surface Receptors in Mammalian Cells

  • Protocol
  • First Online:
  • 4044 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 751))

Abstract

Labeling of cell surface receptors in living cells can be achieved using antibody-conjugated semiconductor quantum dots (QDs). The inherent photostable property of QDs can be exploited for understanding the arrangement and distribution of receptors in the plasma membrane. We describe herein methods that allow conjugation of antibodies to QDs in a single step without the formation of side products. This protocol can be adapted universally for any type of QD structure with a coating of free amino groups.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  2. Alivisatos, P. (2004) The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., Nakayama, A., Parker, J. A., Mihaljevic, T., Laurence, R. G., Dor, D. M., Cohn, L. H., Bawendi, M. G., Frangioni, J. V. (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97

    Article  PubMed  CAS  Google Scholar 

  4. Li, J. J., Wang, Y. A., Guo, W., Keay, J. C., Mishima, T. D., Johnson, M. B., Peng, X. (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575.

    Article  PubMed  CAS  Google Scholar 

  5. Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M., Weller, H. (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters 1, 207–211.

    Article  CAS  Google Scholar 

  6. Pinaud, F., King, D., Moore, H. P, Weiss, S. (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123.

    Article  PubMed  CAS  Google Scholar 

  7. Iyer, G., Pinaud, F., Tsay, J., Weiss, S. (2007) Solubilization of quantum dots with a recombinant peptide from Escherichia coli. Small 3, 793–798.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, S., Bawendi, M. G. (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125, 14652–14653.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, W., Howarth, M., Greytak, A. B., Zheng, Y., Nocera, D. G., Ting, A. Y., Bawendi, M. G. (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 130, 1274–1284.

    Article  PubMed  CAS  Google Scholar 

  10. Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M., Mattoussi, H. (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127, 3870–3878.

    Article  PubMed  CAS  Google Scholar 

  11. Dirksen, A., Dirksen, S., Hackeng, T. M., Dawson, P. E. (2006) Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603.

    Article  PubMed  CAS  Google Scholar 

  12. Dirksen, A., Dawson, P. E. (2008). Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19, 2543–2548.

    Article  PubMed  CAS  Google Scholar 

  13. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G. (1997) (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These protocols were developed in part by support from grants NIH/NIBIB BRP 5-R01-EB000312 and NIH 1-R01-GM086197-01. Ensemble confocal imaging was performed at the UCLA/CNSI Advanced Light Microscopy Shared Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iyer, G., Xu, J., Weiss, S. (2011). Single-Step Conjugation of Antibodies to Quantum Dots for Labeling Cell Surface Receptors in Mammalian Cells. In: Mark, S. (eds) Bioconjugation Protocols. Methods in Molecular Biology, vol 751. Humana Press. https://doi.org/10.1007/978-1-61779-151-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-151-2_34

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-150-5

  • Online ISBN: 978-1-61779-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics