Skip to main content

Exploring New Proteome Space: Combining Lys-N Proteolytic Digestion and Strong Cation Exchange (SCX) Separation in Peptide-Centric MS-Driven Proteomics

  • Protocol
  • First Online:
Gel-Free Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 753))

Abstract

The current advances in mass spectrometry technology have led to the possibility of analyzing more complex biological samples such as entire proteomes. Here, we describe a new and powerful methodology that combines the use of the metalloendopeptidase Lys-N and strong cation exchange with mass spectrometric analysis. The approach described here allows one to separate peptides with different functional groups. The peptides we are able to isolate are N-terminal peptides, phosphorylated peptides with a single lysine, peptides with a single basic residue (lysine), and peptides with multiply basic residues. When this separation strategy is combined with tandem mass spectrometry that involves both collision-induced dissociation and electron transfer dissociation, one can achieve an optimal targeted strategy for proteome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gevaert K., Van Damme P., Ghesquiere B., Impens F., Martens L., Helsens K., et al. (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7, 2698–718.

    Article  PubMed  CAS  Google Scholar 

  2. Link A. J., Eng J., Schieltz D. M., Carmack E., Mize G. J., Morris D. R., et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17, 676–82.

    Article  PubMed  CAS  Google Scholar 

  3. Washburn M. P., Wolters D., Yates J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–7.

    Article  PubMed  CAS  Google Scholar 

  4. Boersema P. J., Divecha N., Heck A. J., Mohammed S. (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6, 937–46.

    Article  PubMed  CAS  Google Scholar 

  5. Motoyama A., Xu T., Ruse C. I., Wohlschlegel J. A., Yates J. R., 3rd (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79, 3623–34.

    Article  PubMed  CAS  Google Scholar 

  6. Wu C. C., MacCoss M. J., Howell K. E., Yates J. R., 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532–8.

    Article  PubMed  CAS  Google Scholar 

  7. Villen J., Gygi S. P. (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3, 1630–8.

    Article  PubMed  Google Scholar 

  8. Gruhler A., Olsen J. V., Mohammed S., Mortensen P., Faergeman N. J., Mann M., et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4, 310–27.

    Article  PubMed  CAS  Google Scholar 

  9. Gnad F., de Godoy L. M., Cox J., Neuhauser N., Ren S., Olsen J. V., et al. (2009) High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9, 4642–52.

    Article  PubMed  CAS  Google Scholar 

  10. Dormeyer W., Mohammed S., Breukelen B., Krijgsveld J., Heck A. J. (2007) Targeted analysis of protein termini. J Proteome Res 6, 4634–45.

    Article  PubMed  CAS  Google Scholar 

  11. Steen H., Mann M. (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699–711.

    Article  PubMed  CAS  Google Scholar 

  12. Molina H., Horn D. M., Tang N., Mathivanan S., Pandey A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104, 2199–204.

    Article  PubMed  CAS  Google Scholar 

  13. Good D. M., Wirtala M., McAlister G. C., Coon J. J. (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6, 1942–51.

    Article  PubMed  CAS  Google Scholar 

  14. Mohammed S., Lorenzen K., Kerkhoven R., van Breukelen B., Vannini A., Cramer P., et al. (2008) Multiplexed proteomics mapping of yeast RNA polymerase II and III allows near-complete sequence coverage and reveals several novel phosphorylation sites. Anal Chem 80, 3584–92.

    Article  PubMed  CAS  Google Scholar 

  15. Coon J. J. (2009) Collisions or electrons? Protein sequence analysis in the 21st century. Anal Chem 81, 3208–15.

    Article  PubMed  CAS  Google Scholar 

  16. Leitner A., Foettinger A., Lindner W. (2007) Improving fragmentation of poorly fragmenting peptides and phosphopeptides during collision-induced dissociation by malondialdehyde modification of arginine residues. J Mass Spectrom 42, 950–9.

    Article  PubMed  CAS  Google Scholar 

  17. Bridgewater J. D., Srikanth R., Lim J., Vachet R. W. (2007) The effect of histidine oxidation on the dissociation patterns of peptide ions. J Am Soc Mass Spectrom 18, 553–62.

    Article  PubMed  CAS  Google Scholar 

  18. Coon J. J., Ueberheide B., Syka J. E., Dryhurst D. D., Ausio J., Shabanowitz J., et al. (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102, 9463–8.

    Article  PubMed  CAS  Google Scholar 

  19. Taouatas N., Drugan M. M., Heck A. J., Mohammed S. (2008) Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods 5, 405–7.

    Article  PubMed  CAS  Google Scholar 

  20. Nonaka T., Ishikawa H., Tsumuraya Y., Hashimoto Y., Dohmae N. (1995) Characterization of a thermostable lysine-specific metalloendopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa. J Biochem 118, 1014–20.

    PubMed  CAS  Google Scholar 

  21. Nonaka T., Dohmae N., Hashimoto Y., Takio K. (1997) Amino acid sequences of metalloendopeptidases specific for acyl-lysine bonds from Grifola frondosa and Pleurotus ostreatus fruiting bodies. J Biol Chem 272, 30032–9.

    Article  PubMed  CAS  Google Scholar 

  22. Taouatas N., Altelaar A. F., Drugan M. M., Helbig A. O., Mohammed S., Heck A. J. (2009) Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications. Mol Cell Proteomics 8, 190–200.

    Article  PubMed  CAS  Google Scholar 

  23. Gauci S., Helbig A. O., Slijper M., Krijgsveld J., Heck A. J., Mohammed S. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493–501.

    Article  PubMed  CAS  Google Scholar 

  24. Swaney D. L., McAlister G. C., Wirtala M., Schwartz J. C., Syka J. E., Coon J. J. (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79, 477–85.

    Article  PubMed  CAS  Google Scholar 

  25. Righetti P. G. (2006) Real and imaginary artefacts in proteome analysis via two-dimensional maps. J Chromatogr B Analyt Technol Biomed Life Sci 841, 14–22.

    Article  PubMed  CAS  Google Scholar 

  26. Rao K. C., Carruth R. T., Miyagi M. (2005) Proteolytic 18O labeling by peptidyl-Lys metalloendopeptidase for comparative proteomics. J Proteome Res 4, 507–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Netherlands Proteomics Center.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Taouatas, N., Mohammed, S., Heck, A.J. (2011). Exploring New Proteome Space: Combining Lys-N Proteolytic Digestion and Strong Cation Exchange (SCX) Separation in Peptide-Centric MS-Driven Proteomics. In: Gevaert, K., Vandekerckhove, J. (eds) Gel-Free Proteomics. Methods in Molecular Biology, vol 753. Humana Press. https://doi.org/10.1007/978-1-61779-148-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-148-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-147-5

  • Online ISBN: 978-1-61779-148-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics