Skip to main content

Epithelial Stem Cells

  • Protocol
  • First Online:
Stem Cell Migration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 750))

Abstract

It is likely that adult epithelial stem cells will be useful in the treatment of diseases, such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa, and alopecias. Additionally, other skin problems such as burn wounds, chronic wounds, and ulcers will benefit from stem cell-related therapies. However, there are many questions that need to be answered before this goal can be realized. The most important of these questions is what regulates the adhesion of stem cells to the niche versus migration to the site of injury. We have started to identify the mechanisms involved in this decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohyama, M., and Vogel, J.C. (2003) Gene delivery to the hair follicle J Investig Dermatol Symp Proc 8, 204–6.

    Article  PubMed  Google Scholar 

  2. Sugiyama-Nakagiri, Y., Akiyama, M., and Shimizu, H. (2006) Hair follicle stem cell-targeted gene transfer and reconstitution system Gene Ther 13, 732–7.

    Article  PubMed  CAS  Google Scholar 

  3. Stenn, K.S., and Cotsarelis, G. (2005) Bioengineering the hair follicle: fringe benefits of stem cell technology Curr Opin Biotechnol 16, 493–7.

    Article  PubMed  CAS  Google Scholar 

  4. Hoeller, D., et al. (2001) An improved and rapid method to construct skin equivalents from human hair follicles and fibroblasts Exp Dermatol 10, 264–71.

    Article  PubMed  CAS  Google Scholar 

  5. Navsaria, H.A., Ojeh, N.O., Moiemen, N., Griffiths, M.A., and Frame, J.D. (2004) Reepithelialization of a full-thickness burn from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra) Plast Reconstr Surg 113, 978–81.

    Article  PubMed  Google Scholar 

  6. Potten, C.S. (1975) Epidermal cell production rates J Invest Dermatol 65, 488–500.

    Article  PubMed  CAS  Google Scholar 

  7. Potten, C.S. (1975) Epidermal transit times Br J Dermatol 93, 649–58.

    Article  PubMed  CAS  Google Scholar 

  8. Tiede, S., et al. (2007) Hair follicle stem cells: walking the maze Eur J Cell Biol 86, 355–76.

    Article  PubMed  CAS  Google Scholar 

  9. Kaur, P. (2006) Interfollicular epidermal stem cells: identification, challenges, potential J Invest Dermatol 126, 1450–8.

    Article  PubMed  CAS  Google Scholar 

  10. Bieniek, R., Lazar, A.J., Photopoulos, C., and Lyle, S. (2007) Sebaceous tumours contain a subpopulation of cells expressing the keratin 15 stem cell marker Br J Dermatol 156, 378–80.

    Article  PubMed  CAS  Google Scholar 

  11. Akiyama, M., Dale, B.A., Sun, T.T., and Holbrook, K.A. (1995) Characterization of hair follicle bulge in human fetal skin: the human fetal bulge is a pool of undifferentiated keratinocytes J Invest Dermatol 105, 844–50.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi, K., Rochat, A., and Barrandon, Y (1993) Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc Natl Acad Sci USA 90, 7391–7395.

    Article  PubMed  CAS  Google Scholar 

  13. Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis Cell 61, 1329–37.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson, C., et al. (1994) Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles Differentiation 55, 127–36.

    Article  PubMed  CAS  Google Scholar 

  15. Bickenbach, J.R., and Mackenzie, I.C (1984) Identification and localization of label-­retaining cells in hamster epithelia. J Invest Dermatol 82, 618–22.

    Article  PubMed  CAS  Google Scholar 

  16. Braun, K.M., et al. (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis Development 130, 5241–55.

    Article  PubMed  CAS  Google Scholar 

  17. Tumbar, T., et al. (2004) Defining the epithelial stem cell niche in skin Science 303, 359–63.

    Article  PubMed  CAS  Google Scholar 

  18. Lavker, R.M., and Sun, T.T. (1982) Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations Science 215, 1239–41.

    Article  PubMed  CAS  Google Scholar 

  19. Cotsarelis, G., Cheng, S.Z., Dong, G., Sun, T.T., and Lavker, R.M. (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells Cell 57, 201–9.

    Article  PubMed  CAS  Google Scholar 

  20. Moll, I. (1995) Proliferative potential of different keratinocytes of plucked human hair follicles J Invest Dermatol 105, 14–21.

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. (2009) The hair follicle as a dynamic miniorgan Curr Biol 19, R132–42.

    Article  PubMed  CAS  Google Scholar 

  22. Allen, T.D., and Potten, C.S. (1974) Fine-structural identification and organization of the epidermal proliferative unit J Cell Sci 15, 291–319.

    PubMed  CAS  Google Scholar 

  23. Potten, C.S., and Allen, T.D. (1976) A model implicating the Langerhans cell in keratinocyte proliferation control Differentiation 5, 43–7.

    Article  PubMed  CAS  Google Scholar 

  24. Roh, C., Tao, Q., Photopoulos, C., and Lyle, S. (2005) In vitro differences between keratinocyte stem cells and transit-amplifying cells of the human hair follicle J Invest Dermatol 125, 1099–105.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis Cell 102, 451–61.

    Article  PubMed  CAS  Google Scholar 

  26. Tomic-Canic, M., Komine, M., Freedberg, I.M., and Blumenberg, M. (1998) Epidermal signal transduction and transcription factor activation in activated keratinocytes J Dermatol Sci 17, 167–81.

    Article  PubMed  CAS  Google Scholar 

  27. Rizvi, A.Z., and Wong, M.H. (2005) Epithelial stem cells and their niche: there’s no place like home Stem Cells 23, 150–65.

    Article  PubMed  Google Scholar 

  28. Watt, F.M., Lo Celso, C., and Silva-Vargas, V. (2006) Epidermal stem cells: an update Curr Opin Genet Dev 16, 518–24.

    Article  PubMed  CAS  Google Scholar 

  29. Owens, D.M., and Watt, F.M. (2003) Contribution of stem cells and differentiated cells to epidermal tumours Nat Rev Cancer 3, 444–51.

    Article  PubMed  CAS  Google Scholar 

  30. Blanpain, C., and Fuchs, E. (2009) Epidermal homeostasis: a balancing act of stem cells in the skin Nat Rev Mol Cell Biol 10, 207–17.

    Article  PubMed  CAS  Google Scholar 

  31. Singer, A.J., and Clark, R.A. (1999) Cutaneous wound healing N Engl J Med 341, 738–46.

    Article  PubMed  CAS  Google Scholar 

  32. Cavani, A., et al. (1993) Distinctive integrin expression in the newly forming epidermis during wound healing in humans J Invest Dermatol 101, 600–4.

    Article  PubMed  CAS  Google Scholar 

  33. Haapasalmi, K., et al. (1996) Keratinocytes in human wounds express alpha v beta 6 integrin J Invest Dermatol 106, 42–8.

    Article  PubMed  CAS  Google Scholar 

  34. Werner, S., et al. (1994) The function of KGF in morphogenesis of epithelium and reepithelialization of wounds Science 266, 819–22.

    Article  PubMed  CAS  Google Scholar 

  35. Zambruno, G., et al. (1995) Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing J Cell Biol 129, 853–65.

    Article  PubMed  CAS  Google Scholar 

  36. Nanney, L.B., Sundberg, J.P,. and King, L.E. (1996) Increased epidermal growth factor receptor in fsn/fsn mice J Invest Dermatol 106, 1169–74.

    Article  PubMed  CAS  Google Scholar 

  37. Etienne-Manneville, S., and Hall, A. (2002) Rho GTPases in cell biology Nature 420, 629–35.

    Article  PubMed  CAS  Google Scholar 

  38. Alberts, A.S., and Treisman, R. (1998) Activation of RhoA and SAPK/JNK signalling pathways by the RhoA-specific exchange factor mNET1 EMBO J 17, 4075–85.

    Google Scholar 

  39. Wu, B.P., Tao, Q., and Lyle, S. (2005) Autofluorescence in the Stem Cell Region of the Hair Follicle Bulge J Investig Dermatol 124, 860–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Draheim, K.M., Lyle, S. (2011). Epithelial Stem Cells. In: Filippi, MD., Geiger, H. (eds) Stem Cell Migration. Methods in Molecular Biology, vol 750. Humana Press. https://doi.org/10.1007/978-1-61779-145-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-145-1_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-144-4

  • Online ISBN: 978-1-61779-145-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics