Skip to main content

Stem Cell Migration: A Zebrafish Model

  • Protocol
  • First Online:
Stem Cell Migration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 750))

Abstract

Compared with other vertebrate animal models, zebrafish (Danio rerio) has its superior advantages for studying stem cell migration. Zebrafish have similar tissues and organs as mammals, where tissue-specific stem cells reside in. Zebrafish eggs are externally fertilized and remain transparent until most of the organs are fully developed. This allows imaging stem cells in vivo very easily. Recently, a zebrafish double pigmentation mutant, casper, became a new popular imaging model in the zebrafish field due to its completely transparent bodies in adulthood. It has been used as an excellent model to study adult hematopoietic stem cell (HSC) in the transplantation setting. The unparalleled imaging power of zebrafish provides great opportunities of tracing stem cells in vivo in the developmental and regenerative context. In this chapter, we use HSC as an example and combine the powerful imaging techniques in zebrafish, to provide protocols for in vivo imaging fluorescence-labeled stem cell migration, stem cell fate tracing in zebrafish embryos, HSC transplantation, and in vivo imaging in both zebrafish embryos and adults. These techniques can also be applied to other types of stem cells in zebrafish embryos and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Jong, J.L., and Zon, L.I. (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis Annu Rev Genet 39, 481–501.

    Article  PubMed  Google Scholar 

  2. North, T.E., Goessling, W., Walkley, C.R., et al. (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis Nature 447, 1007–11.

    Article  PubMed  CAS  Google Scholar 

  3. Dorsky, R.I., Moon, R.T., and Raible, D.W. (1998) Control of neural crest cell fate by the Wnt signalling pathway Nature 396, 370–3.

    Google Scholar 

  4. White, R.M., and Zon, L.I. (2008) Melanocytes in development, regeneration, and cancer Cell Stem Cell 3, 242–52.

    Article  PubMed  CAS  Google Scholar 

  5. Chapouton, P., Adolf, B., Leucht, C., et al. (2006) her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain Development 133, 4293–303.

    Article  PubMed  CAS  Google Scholar 

  6. Stigloher, C., Chapouto, P., Adolf, B., and Bally-Cuif, L. (2008) Identification of neural progenitor pools by E(Spl) factors in the embryonic and adult brain Brain Res Bull 75, 266–73.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson, S.L., and Bennett, P. (1999) Growth control in the ontogenetic and regenerating zebrafish fin Methods Cell Biol 59, 301–11.

    Google Scholar 

  8. White, R.M., Sessa, A., and Burke, C., et al. (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis Cell Stem Cell 2, 183–9.

    Google Scholar 

  9. Galloway, J.L., and Zon, L.I. (2003) Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo Curr Top Dev Biol 53, 139–58.

    Google Scholar 

  10. Kalev-Zylinska, M.L., Horsfield, J.A., Flores, M.V., et al. (2002) Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis Development 129, 2015–30.

    PubMed  CAS  Google Scholar 

  11. Lam, E.Y., Chau, J.Y., Kalev-Zylinska, M.L., et al. (2008) Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors Blood 113, 1241–1249.

    PubMed  Google Scholar 

  12. Bertrand, J.Y., Kim, A.D., Teng, S., and Traver, D. (2008) CD41+ cmyb  +  precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis Development 135, 1853–62.

    Article  PubMed  CAS  Google Scholar 

  13. Mucenski, M.L., McLain, K., Kier, A.B., et al. (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis Cell 65, 677–89.

    Google Scholar 

  14. Lin, H.F., Traver, D., Zhu, H., et al. (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish Blood 106, 3803–10.

    Article  PubMed  CAS  Google Scholar 

  15. Traver, D., Winzeler, A., Stern, H.M., et al. (2004) Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation Blood 104, 1298–305.

    Google Scholar 

  16. Monte Westerfield IoN, University of Oregon. 2000 The Zebrafish Book. 4 ed: University of Oregon Press.

    Google Scholar 

  17. Traver, D., Paw, B.H., Poss, K.D., Penberthy, W.T., Lin, S., and Zon, L.I. (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants Nat Immunol 4, 1238–46.

    Google Scholar 

  18. Zhu, H., Traver D., Davidson, A.J., et al. (2005) Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish Dev Biol 281, 256–69.

    Article  PubMed  CAS  Google Scholar 

  19. Gillette-Ferguson, I., Ferguson, D.G., Poss, K.D., and Moorman, S.J. (2003) Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart Adv Space Res 32, 1641–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lin, S. (2000) Transgenic zebrafish Methods Mol Biol 136, 375–83.

    Google Scholar 

  21. Rosen, J.N., Sweeney, M.F., and Mably, J.D. (2009) Microinjection of zebrafish embryos to analyze gene function J Vis Exp.

    Google Scholar 

  22. Kissa, K., Murayama, E., Zapata, A., et al. (2008) Live imaging of emerging hematopoietic stem cells and early thymus colonization Blood 111, 1147–56.

    Google Scholar 

  23. Bertrand, J.Y., Kim, A.D., Violette, E.P., Stachura, D.L., Cisson, J.L., and Traver, D. (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo Development 134, 4147–56.

    Google Scholar 

  24. Murayama, E., Kissa, K., Zapata, A., et al. (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development Immunity 25, 963–75.

    Google Scholar 

  25. Hatta, K., Tsujii, H., and Omura, T. (2006) Cell tracking using a photoconvertible fluorescent protein Nat Protoc 1, 960–7.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Owen Tamplin for reading the manuscript, Dr. Richard M. White for developing the zebrafish retro-orbital injection technique, and the rest of the Zon lab for the constant advice and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, P., Zon, L.I. (2011). Stem Cell Migration: A Zebrafish Model. In: Filippi, MD., Geiger, H. (eds) Stem Cell Migration. Methods in Molecular Biology, vol 750. Humana Press. https://doi.org/10.1007/978-1-61779-145-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-145-1_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-144-4

  • Online ISBN: 978-1-61779-145-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics