Skip to main content

DNA-Templated Pd Conductive Metallic Nanowires

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

We here present a protocol for the metallization of DNA scaffolds by palladium. The method is based on the initial slow precipitation of palladium oxide onto DNA strands. A reduction step follows to create conductive metallic nanowires. The slow oxide precipitation approach enables the formation of thin and continuous coatings on the DNA strands with negligible parasitic metallization of the remaining substrate surface.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Seeman N.C. (2003) DNA in a material world. Nature 421, 427–431.

    Google Scholar 

  2. Seeman N. C. (1991) the use of branched DNA for nanoscale fabrication. Nanotechnology 2, 149–159.

    Google Scholar 

  3. Mirkin C. A. (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 39, 2258–2272.

    Google Scholar 

  4. Guo X., Gorodetsky A. A., Hone J., Barton J. K., Nuckolls C. (2008) Conductivity of a single DNA duplex bridging a carbon nanotube gap Nature Nanotechnology 3, 163–167. Xu B., Zhang P., Li X., Tao N. (2004) Direct Conductance Measurement of Single DNA Molecules in Aqueous Solution Nanoletters 4, 1105–1108. Storm A. J., van Noort J., de Vries S., Dekker C. (2001) Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale App.Phys.Lett. 79, 3881–3883.

    Google Scholar 

  5. Richter J. (2003), Metallization of DNA Physica E, 16, 157.

    Google Scholar 

  6. Yan H., Park S.H., Finkelstein G., Reif J.H., LaBean T.H. (2003) DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires Science 301, 1882–1884.

    Google Scholar 

  7. Braun E., Eichen Y., Sivan U., Ben-Joseph G. (1998) DNA-templated assembly and electrode attachment of a conducting silver wire Nature 391, 775–778.

    Google Scholar 

  8. Monsoon C.F., Woolley A.T. (2003) DNA-Templated Construction of Copper Nanowires Nanoletters 3, 359–363.

    Google Scholar 

  9. Maubach G., Born D., Csaki A., Fritzsche W. (2005) Parallel Fabrication of DNA-Aligned Metal Nanostructures in Microelectrode Gaps by a Self-Organization Process Small 1, 619–624.

    Google Scholar 

  10. Kumar A., Pattarkine M., Bhadbhade M., Mandale A.B., Ganesh K.N., Datar S.S, Dharmadhikari C.V., Sastry M. (2001) Linear Superclusters of Colloidal Gold Particles by Electrostatic Assembly on DNA Templates Advanced Materials 13, 341–344.

    Google Scholar 

  11. B. Lippert, in Cisplatin: chemistry and biochemistry of a leading anticancer drug; WILEY-VCH, Weinheim, Germany 1999.

    Google Scholar 

  12. Macquet J.P., Theophanides T. (1975) Spécificité de l’interaction DNA-platine dosage du platine, pH métrie Biopolymers 14, 781–799.

    Google Scholar 

  13. Ford E.W., Harnack O., Yasuda A., Wessels J. M. (2001) Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles Advanced Materials 13, 1793–1797.

    Google Scholar 

  14. Colombi Ciacchi L., Mertig M., Seidel R., Pompe W., de Vita A. (2003) Nucleation of platinum clusters on biopolymers: a first principles study of the molecular mechanisms Nanotechnology 14, 840–848.

    Google Scholar 

  15. Macquet J.P., Theophanides T. (1976) DNA-platinum interactions. Characterization of solid DNA-K2PtCl4 complexes Inorganic Chimica Acta 18, 189–194.

    Google Scholar 

  16. Macquet J.P., Butour J.L. (1978) Circular dichroism study of DNA Platinum complexes – Differentiation between monofunctional cis—­bisdentate and trans-bidentate platinum fixation on a series of DNA Eur. J. Biochem. 83, 375–387.

    Google Scholar 

  17. Mertig M., Colombi Ciacchi L., Seidel R., Pompe W., De Vita A. (2002) DNA as a Selective Metallization Template Nanoletters 2, 841–844.

    Google Scholar 

  18. Seidel R., Ciacchi L.C., Weigel M., Pompe W., Mertig M. (2004) Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template-Controlled Cluster Growth J. Phys. Chem. B 108, 10801–10811.

    Google Scholar 

  19. Richter J., Seidel R., Kirsch R., Mertig M., Pompe W., Plaschke J., Schackert H.K. (2000) Nanoscale Palladium Metallization of DNA Advanced Materials 12, 507–510.

    Google Scholar 

  20. Richter J., Mertig M., Pompe W., Monch I., Schackert H. K. (2001) Construction of highly conductive nanowires on a DNA template Appl. Phys. Lett. 78, 536–538.

    Google Scholar 

  21. Deng Z., Mao C. (2003) DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays Nanoletters 3, 1545–1548.

    Google Scholar 

  22. Richter J., Mertig M., Pompe W., Vinzelberg H. (2002) Low-temperature resistance of DNA-templated nanowires Appl. Phys. A 74, 725–728.

    Google Scholar 

  23. Lund J., Dong J., Deng Z., Mao C., Parviz B. A. (2006) Electrical conduction in 7 nm wires constructed on λ-DNA Nanotechnology 17, 27522757.

    Google Scholar 

  24. Nguyen K., Streiff S., Lyonnais S., Goux-Capes L., Filoramo A., Goffman M., Bourgoin J-Ph. (2006) AIP Conference Proceedings 859, 39.

    Google Scholar 

  25. Nguyen K., Monteverde M., Filoramo A., Goux-Capes L., Lyonnais S., Jegou P., Viel P., Goffman M. J.P. Bourgoin (2008) Synthesis of Thin and Highly Conductive DNA-Based Palladium Nanowire Advanced Materials 20, 10991104.

    Google Scholar 

  26. Avouris P., Chen Z., Perebeinos V. (2007) Carbon based electronics Nature Nanotechnology 2, 605–615.

    Google Scholar 

  27. Bensimon D., Simon A., Croquette V., Bensimon A. (1995) Stretching DNA with a Receding Meniscus: Experiments and Models Phys. Rev. Lett. 74, 4754–4757. F. Allemand, Thèse de Doctorat, Laboratoire de Physique Statistique (Paris VI, Paris VII) (1997).

    Google Scholar 

  28. Bensimon A., Simon A., Chiffaudel A., Croquette V., Heslot F., Bensimon D. (1994) Alignment and sensitive detection of DNA by a moving interface Science 265, 2096–2098.

    Google Scholar 

  29. M. Pourbaix, in Atlas d’Équilibres Électrochimiques, GAUTHIER VILLARD, France 1963.

    Google Scholar 

  30. Milic N.B., Bugarcic Z. (1984) Hydrolysis of the palladium(II) ion in a sodium chloride medium Transition Met. Chem. 9, 173176.

    Google Scholar 

  31. Hérard C., Bowen P., Lemaître J., Dutta J. (1995) Chemical synthesis and characterization of nano-crystalline palladium oxide NanoStructured Materials 6, 313316.

    Google Scholar 

  32. Belyakova L.A., Varvarin A.M. (1999) Surfaces properties of silica gels modified with hydrophobic groups Colloids and Surfaces 154, 285–294.

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the NUCAN-NMP Strep 013775 project and the French Ministry of Research through the ACI Bio-NT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Filoramo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nguyen, K., Campidelli, S., Filoramo, A. (2011). DNA-Templated Pd Conductive Metallic Nanowires. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics