Skip to main content

Engineering Mononucleosomes for Single-Pair FRET Experiments

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

  • 2541 Accesses

Abstract

In DNA nanotechnology, DNA is used as a structural material, rather than as an information carrier. The structural organization of the DNA itself determines accessibility to its underlying information content in vivo. Nucleosomes form the basic level of DNA compaction in eukaryotic nuclei. Nucleosomes sterically hinder enzymes that must bind the nucleosomal DNA, and hence play an important role in gene regulation. In order to understand how accessibility to nucleosomal DNA is regulated, it is necessary to resolve the molecular mechanisms underlying conformational changes in the nucleosome. Exploiting bottom-up control, we designed and constructed nucleosomes with fluorescent labels at strategically chosen locations to study nucleosome structure and dynamics in molecular detail with single-pair Fluorescence Resonance Energy Transfer (spFRET) microscopy. Using widefield total internal reflection fluorescence (TIRF) microscopy on immobilized molecules, we observed and quantified DNA breathing dynamics on individual nucleosomes. Alternatively, fluorescence microscopy on freely diffusing molecules in a confocal detection volume allows a fast characterization of nucleosome conformational distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman, N. and Lukeman, P. (2005) Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Reports On Progress In Physics 68, 237–270.

    Article  CAS  Google Scholar 

  2. Seeman, N. (1998) DNA nanotechnology: Novel DNA constructions. Annual Review of Biophysics and Biomolecular Structure 27, 225–248.

    Article  CAS  Google Scholar 

  3. Chen, J. and Seeman, N. (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633.

    Article  CAS  Google Scholar 

  4. Goodman, R., Schaap, I., Tardin, C., Erben, C., Berry, R., Schmidt, C., and Turberfield, A. (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665.

    Article  CAS  Google Scholar 

  5. Rothemund, P. (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302.

    Article  CAS  Google Scholar 

  6. Luger, K., Mader, A., Richmond, R., Sargent, D., and Richmond, T. (1997) Crystal structure of the nucleosome core particle at 2.8  Å resolution. Nature 389, 251–260.

    Article  CAS  Google Scholar 

  7. Luger, K. (2006) Dynamic nucleosomes. Chromosome Research 14, 5–16.

    Article  CAS  Google Scholar 

  8. Koopmans, W. J. A., Brehm, A., Logie, C., Schmidt, T., and van Noort, J. (2007) Single-pair FRET microscopy reveals mononucleosome dynamics. J.Fluoresc. 17, 785–795.

    Article  CAS  Google Scholar 

  9. Koopmans, W. J. A., Schmidt, T., and van Noort, J. (2008) Nucleosome Immobilization Strategies for Single-Pair FRET Microscopy. ChemPhysChem 9, 2002–2009.

    Article  CAS  Google Scholar 

  10. Dyer, P., Edayathumangalam, R., White, C., Bao, Y., Chakravarthy, S., Muthurajan, U., and Luger, K. (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Chromatin and Chromatin Remodeling Enzymes, Pt A 375, 23–44.

    Article  CAS  Google Scholar 

  11. Lowary, P. and Widom, J. (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleo­some positioning. J.Mol.Biol. 276, 19–42.

    Article  CAS  Google Scholar 

  12. Gansen, A., Hauger, F., Toth, K., and Langowski, J. (2007) Single-pair fluorescence resonance energy transfer of nucleosomes in free diffusion: Optimizing stability and resolution of subpopulations. Anal.Biochem. 368, 193–204.

    Article  CAS  Google Scholar 

  13. Kelbauskas, L., Chan, N., Bash, R., Yodh, J., Woodbury, N., and Lohr, D. (2007) Sequence-dependent nucleosome structure and stability variations detected by Förster resonance energy transfer. Biochemistry 46, 2239–2248.

    Article  CAS  Google Scholar 

  14. Davey, C., Sargent, D., Luger, K., Maeder, A., and Richmond, T. (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9  Å resolution. J.Mol.Biol. 319, 1097–1113.

    Article  CAS  Google Scholar 

  15. Claudet, C., Angelov, D., Bouvet, P., Dimitrov, S., and Bednar, J. (2005) Histone octamer instability under single molecule experiment conditions. J.Biol.Chem. 280, 19958–19965.

    Article  CAS  Google Scholar 

  16. Clegg, R. (1992) Fluorescence resonance energy-transfer and nucleic-acids. Methods Enzymol. 211, 353–388.

    Article  CAS  Google Scholar 

  17. Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET. Nature Methods 5, 507–516.

    Article  CAS  Google Scholar 

  18. Lee, N., Kapanidis, A., Wang, Y., Michalet, X., Mukhopadhyay, J., Ebright, R., and Weiss, S. (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys.J. 88, 2939–2953.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrew Routh (MRC Cambridge) for samples of micrococcal nuclease-digested nucleosome core particles and useful discussion, Alexander Brehm (University of Marburg) for histone octamer preparations, and Jürgen Groll (RWTH Aachen) for providing samples of the NCO-star PEG material and support with the coating procedure.

This work is part of the research programme of the “Stichting voor Fundamenteel Onderzoek der materie (FOM),” which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John van Noort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Koopmans, W.J.A., Buning, R., van Noort, J. (2011). Engineering Mononucleosomes for Single-Pair FRET Experiments. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics