Skip to main content

DNA Molecular Handles for Single-Molecule Protein-Folding Studies by Optical Tweezers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

In this chapter, we describe a method that extends the use of optical tweezers to the study of the folding mechanism of single protein molecules. This method entails the use of DNA molecules as molecular handles to manipulate individual proteins between two polystyrene beads. The DNA molecules function as spacers between the protein and the beads, and keep the interactions between the tethering surfaces to a minimum. The handles can have different lengths, be attached to any pair of exposed cysteine residues, and be used to manipulate both monomeric and polymeric proteins. By changing the position of the cysteine residues on the protein surface, it is possible to apply the force to different portions of the protein and along different molecular axes. Circular dichroism and enzymatic activity studies have revealed that for many proteins, the handles do not significantly affect the folding behavior and the structure of the tethered protein. This method makes it possible to study protein folding in the physiologically relevant low-force regime of optical tweezers and enables us to monitor processes – such as refolding events and fluctuations between different molecular conformations – that could not be detected in previous force spectroscopy experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Junker, J. P., Ziegler, F., Rief, M. (2009) Ligand-Dependent Equilibrium Fluctuations of Single Calmodulin Molecules Science 323, 633–637.

    Article  CAS  Google Scholar 

  2. Oberhauser, A. F., Carrion-Vazquez, M. (2008) Mechanical biochemistry of proteins one molecule at a time Journal of Biological Chemistry 283, 6617–6621.

    Article  CAS  Google Scholar 

  3. Borgia, A., Williams, P. M., Clarke, J. (2008) Single-molecule studies of protein folding Annual Review of Biochemistry 77, 101–125.

    Article  CAS  Google Scholar 

  4. Garcia-Manyes, S., Brujic, J., Badilla, C. L., Fernandez, J. M. (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin Biophysical Journal 93, 2436–2446.

    Article  CAS  Google Scholar 

  5. Fowler, S. B., Best, R. B., Toca Herrera, J. L., Rutherford, T. J., Steward, A., Paci, E., Karplus, M., Clarke, J. (2002) Mechanical Unfolding of a Titin Ig Domain: Structure of Unfolding Intermediate Revealed by Combining AFM, Molecular Dynamics Simulations, NMR and Protein Engineering J Mol Biol 322, 841–849.

    Article  CAS  Google Scholar 

  6. Forman, J. R., Clarke, J. (2007) Mechanical unfolding of proteins: insights into biology, structure and folding Current Opinion in Structural Biology 17, 58–66.

    Article  CAS  Google Scholar 

  7. Bustamante, C., Chemla, Y. R., Forde, N. R., Izhaky, D. (2004) Mechanical processes in biochemistry Annu Rev Biochem 73, 705–748.

    Article  CAS  Google Scholar 

  8. Kellermayer, M. S., Smith, S. B., Granzier, H. L., Bustamante, C. (1997) Folding-unfolding transitions in single titin molecules ­characterized with laser tweezers Science 276, 1112–1116.

    Article  CAS  Google Scholar 

  9. Cecconi, C., Shank, E. A., Dahlquist, F. W., Marqusee, S., Bustamante, C. (2008) Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers European Biophysics Journal with Biophysics Letters 37, 729–738.

    Article  CAS  Google Scholar 

  10. Wang, M. D., Yin, H., Landick, R., Gelles, J., Block, S. M. (1997) Stretching DNA with optical tweezers Biophysical Journal 72, 1335–1346.

    Article  CAS  Google Scholar 

  11. Smith, S. B., Cui, Y., Bustamante, C. (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules Science 271, 795–799.

    Article  CAS  Google Scholar 

  12. Cecconi, C., Shank, E. A., Bustamante, C., Marqusee, S. (2005) Direct observation of the three-state folding of a single protein molecule Science 309, 2057–2060.

    Article  CAS  Google Scholar 

  13. Cecconi, C., Shank, E. A., Marqusee, S., Bustamante, C. Studying protein folding with laser tweezers. In: Broglia RA, Serrano L, Tiana G, eds. Proceedings of the International School Enrico Fermi - Course CLXV: IOS Press; 2006:145–160.

    Google Scholar 

  14. Shank, E. A., Cecconi, C., Dill, J. W., Marqusee, S., Bustamante, C. (2010) The folding cooperativity of a protein is controlled by its chain topology Nature 465, 637–640.

    Google Scholar 

  15. Riener, C. K., Kada, G., Gruber, H. J. (2002) Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-­dithiodipyridine Anal Bioanal Chem 373, 266–276.

    Article  CAS  Google Scholar 

  16. Pedersen, A. O., Jacobsen, J. (1980) Reactivity of the thiol group in human and bovine albumin at pH 3–9, as measured by exchange with 2,2’-dithiodipyridine Eur J Biochem 106, 291–295.

    Article  CAS  Google Scholar 

  17. Grassetti, D. R., Murray, J. F., Jr. (1967) Determination of sulfhydryl groups with 2,2’- or 4,4’-dithiodipyridine Arch Biochem Biophys 119, 41–49.

    Article  CAS  Google Scholar 

  18. Dietz, H., Berkemeier, F., Bertz, M., Rief, M. (2006) Anisotropic deformation response of single protein molecules Proceedings of the National Academy of Sciences of the United States of America 103, 12724–12728.

    Article  CAS  Google Scholar 

  19. Dietz, H., Bertz, M., Schlierf, M., Berkemeier, F., Bornschlogl, T., Junker, J. P., Rief, M. (2006) Cysteine engineering of polyproteins for single-molecule force spectroscopy Nature Protocols 1, 80–84.

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., Maniatis, T. Molecular Cloning: A Laboratory Manual. Second Edition ed: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  21. Smith, S. B., Cui, Y., Bustamante, C. (2003) Optical-trap force transducer that operates by direct measurement of light momentum Methods Enzymol 361, 134–162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Cecconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cecconi, C., Shank, E.A., Marqusee, S., Bustamante, C. (2011). DNA Molecular Handles for Single-Molecule Protein-Folding Studies by Optical Tweezers. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics