Skip to main content

Transfection-Based Genomic Readout for Identifying Rare Transcriptional Splice Variants

  • Protocol
  • First Online:
  • 1956 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 748))

Abstract

Understanding the transcriptome, defined as the complete transcriptional component of the genome, is far more complex than originally considered. Even with the near fully resolved human and mouse genomes, for which extensive databases of transcribed sequence data (e.g., expressed sequence tags) are available, it is presently not possible to experimentally recover or computationally predict the full range of transcription products that derive from multiexon genes. Many genes are tightly regulated, which could include alternative processing of RNA, and lead to significant underrepresentation of many transcripts. A multitude of factors in addition to cell lineage- and developmental stage-specific expression as well as shortcomings in computational methods result in a less than complete understanding of transcriptional complexity. Here, we describe an approach to predict and evaluate a more complete repertoire of transcriptional products that derive from specific genetic loci with attention toward analysis of immune receptor genes. This approach is particularly useful in identifying gene products, including alternative splice forms, that originate from complex multigene families.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Salzberg, S., and Yorke, J. (2005) Beware of mis-assembled genomes. Bioinformatics 21, 4320–1.

    Article  PubMed  CAS  Google Scholar 

  2. Amemiya, C. T., Ota, T., and Litman, G. W. (1996) in “Nonmammalian Genomic Analysis: A Practical Guide” (Birren, B., and Lai, E., Eds.), Academic Press, Inc., San Diego.

    Google Scholar 

  3. Graham, F., Smiley, J., Russell, W., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–74.

    Article  PubMed  CAS  Google Scholar 

  4. Shaw, G., Morse, S., Ararat, M., and Graham, F. (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK293T cells. FASEB J 16, 869–71.

    PubMed  CAS  Google Scholar 

  5. Zhang, Y., and Frohman, M. (1997) Using rapid amplification of cDNA ends (RACE) to obtain full-length cDNAs. Methods Mol Biol 69, 61–87.

    PubMed  CAS  Google Scholar 

  6. Amemiya, C., Prohaska, S., Hill-Force, A., Cook, A., Wasserscheid, J., Ferrier, D., Pascual-Anaya, J., Garcia-Fernàndez, J., Dewar, K., and Stadler, P. (2008) The amphioxus Hox cluster: characterization, comparative genomics, and evolution. J Exp Zool B Mol Dev Evol 310, 465–77.

    Article  PubMed  Google Scholar 

  7. Amemiya, C., and Zon, L. (1999) Generation of a zebrafish P1 artificial chromosome library. Genomics 58, 211–3.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, S., Horrigan, S., Altenhofen, J., Arbieva, Z., Hoffman, R., and Westbrook, C. (1998) Modification of bacterial artificial chromosome clones using Cre recombinase: introduction of selectable markers for expression in eukaryotic cells. Genome Res 8, 404–12.

    PubMed  CAS  Google Scholar 

  9. Heintz, N. (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2, 861–70.

    Article  PubMed  CAS  Google Scholar 

  10. Giraldo, P., and Montoliu, L. (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10, 83–103.

    Article  PubMed  CAS  Google Scholar 

  11. Al-Hasani, K., Simpfendorfer, K., Wardan, H., Vadolas, J., Zaibak, F., Villain, R., and Ioannou, P. (2003) Development of a novel bacterial artificial chromosome cloning system for functional studies. Plasmid 49, 184–7.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Z., Longacre, A., and Engler, P. (2004) Retrofitting BACs with a selectable marker for transfection. Methods Mol Biol 256, 69–76.

    PubMed  CAS  Google Scholar 

  13. Sparwasser, T., and Eberl, G. (2007) BAC to immunology–bacterial artificial chromosome-mediated transgenesis for targeting of immune cells. Immunology 121, 308–13.

    Article  PubMed  CAS  Google Scholar 

  14. Dishaw, L., Mueller, M., Gwatney, N., Cannon, J., Haire, R., Litman, R., Amemiya, C., Ota, T., Rowen, L., Glusman, G., and Litman, G. (2008) Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus. BMC Genet 9, 78.

    Article  PubMed  Google Scholar 

  15. Yoder, J., Litman, R., Mueller, M., Desai, S., Dobrinski, K., Montgomery, J., Buzzeo, M., Ota, T., Amemiya, C., Trede, N., Wei, S., Djeu, J., Humphray, S., Jekosch, K., Hernandez Prada, J., Ostrov, D., and Litman, G. (2004) Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc Natl Acad Sci U S A 101, 15706–11.

    Article  PubMed  CAS  Google Scholar 

  16. Tsaftaris, A., Pasentzis, K., and Argiriou, A. (2010) Rolling circle amplification of genomic templates for inverse PCR (RCA-GIP): a method for 5’- and 3’-genome walking without anchoring. Biotechnol Lett 32, 157–61.

    Article  PubMed  CAS  Google Scholar 

  17. Tsuchiya, T., Kameya, N., and Nakamura, I. (2009) Straight walk: a modified method of ligation-mediated genome walking for plant species with large genomes. Anal Biochem. 388, 150–60.

    Article  Google Scholar 

  18. Parimoo, S., Patanjali, S., Shukla, H., Chaplin, D., and Weissman, S. (1991) cDNA selection: ­efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments. Proc Natl Acad Sci U S A 88, 9623–7.

    Article  PubMed  CAS  Google Scholar 

  19. Lovett, M., Kere, J., and Hinton, L. (1991) Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc Natl Acad Sci U S A 88, 9628–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry J. Dishaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dishaw, L.J., Mueller, M.G., Haire, R.N., Litman, G.W. (2011). Transfection-Based Genomic Readout for Identifying Rare Transcriptional Splice Variants. In: Rast, J., Booth, J. (eds) Immune Receptors. Methods in Molecular Biology, vol 748. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-139-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-139-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-138-3

  • Online ISBN: 978-1-61779-139-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics