Skip to main content

Multiresidue Analysis of Antibiotics in Food of Animal Origin Using Liquid Chromatography–Mass Spectrometry

  • Protocol
  • First Online:
Mass Spectrometry in Food Safety

Part of the book series: Methods in Molecular Biology ((MIMB,volume 747))

Abstract

Antibiotics are the most important drugs administered in veterinary medicine. Their use in food-producing animals may result in antibiotic residues in edible tissues, which are monitored to protect human and animal health, support the enforcement of regulations, provide toxicological assessment data, and resolve international trade issues. This chapter provides basic characterization of the most important classes of antibiotics used in food-producing animals (aminoglycosides, amphenicols, β-lactams, macrolides and lincosamides, nitrofurans, quinolones, sulfonamides, and tetracyclines), along with examples of practical liquid chromatographic-(tandem) mass spectrometric methods for analysis of their residues in food matrices of animal origin. The focus is on multiresidue methods that are favored by regulatory and other food testing laboratories for their ability to analyze residues of multiple compounds in a time- and cost-effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botsoglou, N.A. and Fletouris, D.J. (2001) Drug Residues in Foods: Pharmacology, Food Safety, and Analysis, Marcel Dekker, Inc., New York, NY, USA.

    Google Scholar 

  2. Di Corcia, A. and Nazzari, M. (2002) Liquid chromatographic-mass spectrometric methods for analyzing antibiotic and antibacterial agents in animal food products. J. Chromatogr. A 974, 53–89.

    Google Scholar 

  3. Balizs, G. and Hewitt A. (2003) Determination of veterinary drug residues by liquid chromatography and tandem mass spectrometry. Anal. Chim. Acta 492, 105–131.

    Google Scholar 

  4. Gentili, A., Perret, D., Marchese, S. (2005) Liquid chromatography-tandem mass spectrometry for performing confirmatory analysis of veterinary drugs in animal-food products. Trends Anal. Chem. 24, 704–733.

    Google Scholar 

  5. Stolker, A.A.M. and Brinkman, U.A.Th. (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals - a review. J. Chromatogr. A 1067, 15–33.

    Google Scholar 

  6. Blasco, C., Torres, C.M., Pico, Y. (2007) Progress in analysis of residual antibacterials in food. Trends Anal. Chem. 26, 895–913.

    Google Scholar 

  7. Stolker, A.A.M., Zuidema, T., Nielen, M.W.F. (2007) Residue analysis of veterinary drugs and growthpromoting agents. Trends Anal. Chem. 26, 967–979

    Google Scholar 

  8. Mastovska, K. (2008) Recent developments in chromatographic techniques, in Comprehensive Analytical Chemistry, Volume 51: Food Contaminants and Residue Analysis (Pico, Y., ed.), Elsevier, Oxford, UK, pp. 175–200.

    Google Scholar 

  9. SOP No. CLG-AMG1.02 (2005) US Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science (www.fsis.usda.gov/PDF/CLG_AMG_1_02.pdf)

    Google Scholar 

  10. Zhu, W.-X., Yang, J.-Z., Wei, W., Liu, Y.-F., Zhang, S.-S. (2008) Simultaneous determination of 13 aminoglycoside residues in foods of animal origin by liquid chromatography_electrospray ionization tandem mass spectrometry with two consecutive solid-phase extraction steps. J. Chromatogr. A 1207, 29–37

    Google Scholar 

  11. Kaufmann, A. and Maden, K. (2005) Determination of 11 aminoglycosides in meat and liver by liquid chromatography with tandem mass spectrometry. J. AOAC Int. 88, 1118–1125.

    Google Scholar 

  12. van Holthoon, F.L., Essers, M.L., Mulder, P.J., Stead, S.L., Caldow, M., Ashwin, H.M., Sharman, M. (2009) A generic method for the quantitative analysis of aminoglycosides (and spectinomycin) in animal tissue using methylated internal standards and liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 637, 135–143.

    Google Scholar 

  13. Babin, Y. and Fortier, S. (2007) A high-throughput analytical method for determination of aminoglycosides in veal tissues by liquid chromatography/tandem mass spectrometry with automated cleanup. J AOAC Int. 90, 1418–1426

    Google Scholar 

  14. Oertel, R., Neumeister, V., Kirch, W. (2004) Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. J. Chromatogr. A 1058, 197–201.

    Google Scholar 

  15. Turnipseed, S.B., Clark, S.B., Karbiwnyk, C.M., Andersen, W.C., Miller, K.E., Madson, M.R. (2009) Analysis of aminoglycoside residues in bovine milk by liquid chromatography ­electrospray ion trap mass spectrometry after derivatization with phenyl isocyanate. J. Chromatogr. B 877, 1487–1493.

    Google Scholar 

  16. Commission Decision 2003/181/EC of 13 March 2003 amending Decision 2002/657/EC as regards setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin, Brussels, Belgium, 2003. Official Journal of the European Union L71, 17–18.

    Google Scholar 

  17. Ashwin, H.M., Stead, S.L., Taylor, J.C., Startin, J.R., Richmond, S.F., Homer, V., Bigwood, T., Sharman M. (2005) Develop­ment and validation of screening and con­firmatory methods for the detection of chloram­phenicol and chloramphenicol glucuronide using SPR biosensor and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 529, 103–108.

    Google Scholar 

  18. Vinci, F., Guadagnuolo, G., Danese, V., Salini, M., Serpe, L., Gallo, P. (2005) In-house validation of a liquid chromatography/electrospray tandem mass spectrometry method for confirmation of chloramphenicol residues in muscle according to Decision 2002/657/EC. Rapid Commun. Mass. Spectrom. 19, 3349–3355.

    Google Scholar 

  19. Vivekanandan, K., Swamy, M.G., Prasad, S., Mukherjee, R. (2005) A simple method of isolation of chloramphenicol in honey and its estimation by liquid chromatographycoupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3025–3030.

    Google Scholar 

  20. Ronning, H.T., Einarsen, K., Asp, T.N. (2006) Determination of chloramphenicol residues in meat, seafood, egg, honey, milk, plasma and urine with liquid chromatography–tandem mass spectrometry, and the validation of the method based on 2002/657/EC. J. Chromatogr. A 1118, 226–233.

    Google Scholar 

  21. Nicolich, R.S., Werneck-Barroso, E., Sipoli Marques, S.A. (2006). Food safety evaluation: detection and confirmation of chloram­phenicol in milk by high performance liquid ­chromatography-tandem mass spectrometry. Anal. Chim. Acta 565, 97–102.

    Google Scholar 

  22. Boyd, B., Bjork, H., Billing, J., Shimelis, O., Axelsson, S., Leonora, M., Yilmaz, E. (2007) Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers. J. Chromatogr. A 1174, 63–71.

    Google Scholar 

  23. Rodziewicz, L., Zawadzka, I. (2008) Rapid determination of chloramphenicol residues in milk powder by liquidchromatography–­elektrospray ionization tandem mass spectrometry. Talanta 75, 846–850.

    Google Scholar 

  24. Zhang, S., Liu, Z., Guo, X., Cheng, L., Wang, Z., Shen, Z. (2008) Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 875, 399–404.

    Google Scholar 

  25. Schneider, M.J., Mastovska, K., Lehotay, S.J., Lightfield, A.R., Kinsella, B., Shultz, C. (2009) Comparison of screening methods for antibiotics in beef kidney juice and serum. Anal. Chim. Acta 637, 290–297.

    Google Scholar 

  26. Mastovska, K. and Lightfield, A.R. (2008) Streamlining methodology for the multiresidue analysis of beta-lactam antibiotics in bovine kidney using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1202, 118–123.

    Google Scholar 

  27. Fagerquist, C.K, Lightfield, A.R., Lehotay, S.J. (2005) Confirmatory and quantitative analysis of β-lactam antibiotics in bovine kidney tissue by dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal. Chem. 77, 1473–1482.

    Google Scholar 

  28. Mastovska, K. and Lightfield, A.R. (2007) Use of the echo peak technique to compensate for matrix effects in the LC-MS/MS analysis of β-lactam antibiotics, in Proceedings of 55th ASMS Conference on Mass Spectrometry, Indianapolis, IN, USA, June 3–7, 2007.

    Google Scholar 

  29. Becker M, Zittlau E, Petz M (2004) Residue analysis of 15 penicillins and cephalosporins in bovine muscle, kidney and milk by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 520, 19–32.

    Google Scholar 

  30. Riediker, S. and Stadler, R.H. (2001) Simultaneous determination of five β-lactam antibiotics in bovine milk using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal. Chem. 73, 1614–1621.

    Google Scholar 

  31. Ito, Y., Ikai, Y., Oka, H., Matsumoto, H., Miyazaki, Y., Takeba, K., Nagase, H. (2001) Application of ion-exchange cartridge clean-up in food analysis IV. Confirmatory assay of benzylpenicillin, phenoxymethylpenicillin, oxacillin, cloxacillin, nafcillin and dicloxacillin in bovine tissues by liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A 911, 217–223.

    Google Scholar 

  32. Fagerquist, C.K and Lightfield, A.R. (2003) Confirmatory analysis of β-lactam antibiotics in kidney tissue by liquid chromatography/electrospray ionization selective reaction monitoring ion trap tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17, 660–671.

    Google Scholar 

  33. Holstege, D.M., Puschner, B., Whitehead, G., Galey, F.D. (2002) Screening and mass spectral confirmation of β-lactam antibiotic residues in milk using LC-MS/MS. J. Agric. Food Chem. 50, 406–411.

    Google Scholar 

  34. Straub, R.F. and Voyksner, R.D. (1993) Determination of penicillin-g, ampicillin, amoxicillin, cloxacillin and cephapirin by high-performance liquid-chromatography electrospray massspectrometry. J. Chromatogr. 647, 167–181.

    Google Scholar 

  35. Draisci, R., Palleschi, L., Ferretti, E., Achene, L., Cecilia, A. (2001) Confirmatory method for macrolide residues in bovine tissues by micro-liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 926, 97–104.

    Google Scholar 

  36. Dubois, M., Fluchard, D., Sior, E., Delahaut, P. (2001) Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. B 735, 189–202.

    Google Scholar 

  37. Wang, J. and Leung D. (2007) Analyses of macrolide antibiotic residues in eggs, raw milk, and honey using both ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 21, 3213–3222.

    Google Scholar 

  38. Bogialli, S., Di Corcia, A., Lagana, A., Mastrantoni, V., Sergi, M. (2007) A simple and rapid confirmatory assay for analyzing antibiotic residues of the macrolide class and lincomycin in bovine milk and yoghurt: hot water extraction followed by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21, 237–246.

    Google Scholar 

  39. Martos, P.A, Lehotay S.J., Shurmer, B. (2008) Ultratrace analysis of nine macrolides, including tulathromycin a (draxxin), in edible ­animal tissues with minicolumn liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 56, 8844–8850.

    Google Scholar 

  40. Berrada, H., Borrull, F., Font, G., Moltó, J.C., Marcé, R.M. (2007) Validation of a confirmatory method for the determination of macrolides in liver and kidney animal tissues in accordance with the European Union regulation 2002/657/EC. J. Chromatogr. A 1157, 281–288.

    Google Scholar 

  41. Berrada, H., Borrull, F., Font, G., Marcé, R.M. (2008) Determination of macrolide antibiotics in meat and fish using pressurized liquid extraction and liquid chromatography–mass spectrometry J. Chromatogr. A 1208, 83–89.

    Google Scholar 

  42. Cooper, K.M., McCracken, R.J., Kennedy, D.G. (2005) Nitrofurazone accumulates in avian eyes - a replacement for semicarbazide as a marker of abuse. Analyst 130, 824–827.

    Google Scholar 

  43. Leitner, A., Zollner, P., Lindner, W.J. (2001) Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-­performance liquid chromatography–tandem mass spectrometry. J. Chromatogr A 939, 49–58.

    Google Scholar 

  44. Mottier, P., Khong, S.-P., Gremaud, E., Richoz, J., Delatour, T., Goldmann, T., Guy, P.A. (2005) Quantitative determination of four nitrofuran metabolites in meat by isotope dilution liquid chromatography–electrospray ionisation–tandem mass spectrometry. J. Chromatogr A 1067, 85–91.

    Google Scholar 

  45. Finzi, J.K., Donato, C.L., Sucupira, M., De Nucci, G. (2005) Determination of nitrofuran metabolites in poultry muscle and eggs by liquid chromatography-tandem mass spectrometry. J. Chromatogr B 824, 30–35.

    Google Scholar 

  46. Verdon, E., Couedor, P., Sanders, P. (2007) Multi-residue monitoring for the simultaneous determination of five nitrofurans (furazolidone, furaltadone, nitrofurazone, nitrofurantoine, nifursol) in poultry muscle tissue through the detection of their five major metabolites (AOZ, AMOZ, SEM, AHD, DNSAH) by ­liquid chromatography coupled to electrospray tandem mass spectrometry - In-house validation in line with Commission Decision 657/2002/EC. Anal. Chim. Acta 586, 336–347.

    Google Scholar 

  47. Xia, X., Li, X., Zhang, S., Ding, S., Jiang, H., Li, J., Shen, J. (2008) Simultaneous determination of 5-nitroimidazoles and nitrofurans in pork by high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr A 1208, 101–108.

    Google Scholar 

  48. Bock, C., Stachel, C., Gowik, P. (2007) Validation of a confirmatory method for the determination of residues of four nitrofurans in egg by liquid chromatography–tandem mass spectrometry with the software InterVal. Anal. Chim. Acta 586, 348–358.

    Google Scholar 

  49. Rodziewicz, L. (2008) Determination of nitrofuran metabolites in milk by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr B 864, 156–160.

    Google Scholar 

  50. Chu, P.-S., and Lopez, M.I. (2005) Liquid chromatography-tandem mass spectrometry for the determination of protein-bound residues in shrimp dosed with nitrofurans. J. Agric. Food Chem. 53, 8934–8939.

    Google Scholar 

  51. S. Phongvivat (2004) Nitrofurans Case Study: Thailand’s Experience, in report from Joint FAO/WHO Technical Workshop on Residues of Substances without ADI/MRL in Food, Bangkok, Thailand, 125–149 (ftp://ftp.fao.org/docrep/fao/008/y5723e/y5723e00.pdf).

    Google Scholar 

  52. Hernandez-Arteseros, J.A., Barbosa Compano, J.R., Prat, M.D. (2002) Analysis of quinolone residues in edible animal products. J. Chromatogr. A 945, 1–24.

    Google Scholar 

  53. Andrei, V., Blasco, C., Pico, Y. (2007) Analytical strategies to determine quinolone residues in food and the environment, Trends Anal. Chem. 26, 534–556.

    Google Scholar 

  54. Mottier, P., Hammel, Y.-A., Gremaud, E., Guy, P.A. (2008) Quantitative high-throughput analysis of 16 (fluoro)quinolones in honey using automated extraction by turbulent flow chromatography coupled to liquid chromatograph-tandem mass spectrometry. J. Agric. Food Chem. 56, 35–43.

    Google Scholar 

  55. Hermo, M.P., Nemutlu, E., Kir, S., Barron, D., Barbosa, J. (2008) Improved determination of quinolones in milk at their MRL levels using LC–UV, LC–FD, LC–MS and LC–MS/MS and validation in line with regulation 2002/657/EC. Anal. Chim. Acta 613, 98–107.

    Google Scholar 

  56. van Vyncht, G., Janosi, A., Bordin, G., Toussaint, B., Maghuin-Rogister, G., De Pauw, E., Rodriguez, A.R. (2002) Multiresidue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 952, 121–129.

    Google Scholar 

  57. Toussaint, B., Chedin, M., Bordin, G., Rodriguez, A.R. (2005) Determination of (fluoro)quinolone antibiotic residues in pig kidney using liquid chromatography–tandem mass spectrometry: I. Laboratory-validated method. J. Chromatogr. A 1088, 32–39.

    Google Scholar 

  58. Hermo, M.P., Barron, D., Barbosa, J. (2008) Determination of multiresidue quinolones regulated by the European Union in pig liver samples. High-resolution time-of-flight mass spectrometry versus tandem mass spectrometry detection. J. Chromatogr. A 1201, 1–14.

    Google Scholar 

  59. Bogialli, S., D’Ascenzo, G., Di Corcia, A., Lagana, A., Tramontana, G. (2009) Simple assay for monitoring seven quinolone antibacterials in eggs: Extraction with hot water and liquid chromatography coupled to tandem mass spectrometry Laboratory validation in line with the European Union Commission Decision 657/2002/EC. J. Chromatogr. A 1216, 794–780.

    Google Scholar 

  60. Schneider, M.J. and Donoghue, D.J. (2003) Multiresidue determination of fluo­roquinolone antibiotics in eggs using liquid chromatography–fluorescence–mass spectrometryn . Anal. Chim. Acta 483, 39–49.

    Google Scholar 

  61. Schneider, M.J. and Donoghue, D.J. (2002) Multiresidue analysis of fluoroquinolone antibiotics in chicken tissue using liquid chromatography-fluorescence-multiple mass spectrometry. J. Chromatogr. B 780, 83–92.

    Google Scholar 

  62. Johnston, L., Mackay, L., Croft, M. (2002) Determination of quinolones and fluoroquinolones in fish tissue and seafood by high-performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection. J. Chromatogr. A 982, 97–109.

    Google Scholar 

  63. Cai, Z., Zhang, Y., Pan, H., Tie, X., Ren, Y. (2008) Simultaneous determination of 24 sulfonamide residues in meat by ultra-­performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1200, 144–155.

    Google Scholar 

  64. Shao, B., Dong, D., Wu, Y., Hu, J., Meng, J., Tu, X., Xu, S. (2005) Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 546, 174–181.

    Google Scholar 

  65. Sergi, M., Gentil, A., Perret, D., Marchese, S., Materazzi, S., Curini, R. (2007) MSPD extraction of sulphonamides from meat followed by LC tandem MS determination. Chromatographia 65, 757–761.

    Google Scholar 

  66. Mohamed, R., Hammel, Y.-A., LeBreton, M.-H., Tabet, J.-C., Jullien, L., Guy, P.A. (2007) Evaluation of atmospheric pressure ionization interfaces for quantitative measurement of sulfonamides in honey using isotope dilution liquid chromatography coupled with tandem mass spectrometry techniques. J. Chromatogr. A 1160, 194–205.

    Google Scholar 

  67. Thompson, T.S. and Noot, D.K. (2005) Determination of sulfonamides in honey by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 551, 168–176.

    Google Scholar 

  68. Heller, D.N., Ngoh, M.A., Donoghue, D., Podhorniak, L., Righter, H., Thomas, M.H. (2002) Identification of incurred sulfonamide residues in eggs: methods for confirmation by liquid chromatography–tandem mass spectrometry and quantitation by liquid chro­matography with ultraviolet detection. J. Chromatogr. B 774, 39–52.

    Google Scholar 

  69. Sheridan, R., Policastro, B., Thomas, S., Rice, D. (2008) Analysis and occurrence of 14 sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction followed by LC/MS/MS analysis. J. Agric. Food Chem. 56, 3509–3516.

    Google Scholar 

  70. Zhenfeng, Y., Yueming, Q., Xiuyun, L., Caini, J. (2006) Determination of multi-residues of ­tetracyclines and their metabolites in milk by high performance liquid chromatography-tandem positive-ion electrospray ionization mass spectrometry. Chin. J. Anal. Chem. 34, 1255–1259.

    Google Scholar 

  71. Nakazawa, H., Ino, S., Kato, K., Watanabe, T., Ito, Y., Oka, H. (1999) Simultaneous determination of residual tetracyclines in foods by high-performance liquid chroma­tography with atmospheric pressure chemical ionization tandem mass spectrometry. J. Chromatogr. B 732, 55–64.

    Google Scholar 

  72. Cherlet, M., Schelkens, M., Croubels, S., De Backer, P. (2003) Quantitative multi-resideu analysis of tetracycline and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry. Anal. Chim. Acta 492, 199–213.

    Google Scholar 

  73. Bogialli, S., Curini, R., Di Corcia, A., Lagana, A., Rizzuti, G. (2006) A rapid confirmatory method for analyzing tetracycline antibiotics in bovine, swine, and poultry muscle tissues: matrix solid-phase dispersion with heated water as extractant followed by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 54, 1564–1570.

    Google Scholar 

  74. Blasco, C., Di Corcia, A., Pico, Y. (2009) Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. Food Chem., 116, 1005–1012.

    Google Scholar 

  75. Anderson, C.R., Rupp, H.R., Wu, W.-H. (2005) Complexities in tetracycline analysis – chemistry, matrix extraction, cleanup, and liquid chromatography. J. Chromatogr. A 1075, 23–32.

    Google Scholar 

  76. Mastovska, K. and Lightfield, A.R. (2008) Reversed phase and aqueous normal phase retention in multiclass LC-MS analysis of antibiotics. Am. Lab. (on-line edition) 6–7, 37–40.

    Google Scholar 

  77. Bruno, F., Curini, R., Di Corcia, A., Nazzari, M., Pallagrosi, M. (2002) An original approach to determining traces of tetracycline antibiotics in milk and eggs by solid-phase extraction and liquid chromatography/mass spectrometry. Rapid Commun.Mass Spectrom. 16, 1365–1376.

    Google Scholar 

  78. Heller, D.N., Nochetto, C.B., Rummel, N.B., Thomas, M.H. (2006) Development of multiclass methods for drug residues in eggs: hydrophilic solid-phase extraction cleanup and liquid chromatography/tandem mass spectrometry of tetracycline, fluoroquinolone, sulfonamide, and β-lactam residues. J. Agric. Food Chem. 54, 5267–5278.

    Google Scholar 

  79. Turnipseed, S.B., Andersen, W.C., Karbiwnyk, C.M., Madson, M.R., Miller, K.E. (2008) Multi-class, multi-residue liquid chromatography-tandem mass spectrometry screening and confirmation methods for drug residues in milk. Rapid Commun. Mass Spectrom. 22, 1467–1480.

    Google Scholar 

  80. Hammel, Y.-A., Mohamed, R., Gremaud, E., LeBreton, M.-H., Guy, P.A. (2008) Multi-screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1177, 58–76.

    Google Scholar 

  81. Granelli, K. and Branzell, C. (2007) Rapid multi-residue screening of antibiotics in muscle and kidney by liquid chromatography-electrospray ionization–tandem mass spectrometry. Anal. Chim. Acta 586, 289295.

    Google Scholar 

  82. Carretero, V., Blasco, C., Pico, Y. (2008) Multi-class determination of antimicrobials in meat by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1209, 162–173.

    Google Scholar 

  83. Chico, J., Rubies, A., Centrich, F., Companyo, R., Prat, M.D., Granados, M. (2008) High-throughput multiclass method for antibiotic residue analysis by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1213, 189–199.

    Google Scholar 

  84. Stubbings, G. and Bigwood, T. (2009) The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach. Anal. Chim. Acta 637, 6878.

    Google Scholar 

  85. Yamada, R., Kozono, M., Ohmori, T., Morimatsu, F., Kitayama, M. (2006) Simultaneous determination of residual veterinary drugs in bovine, porcine, and chicken muscle using liquid chromatography coupled with electrospray ionization tandem mass ­spectrometry. Biosci. Biotechnol. Biochem. 70, 54–65.

    Google Scholar 

  86. Kaufmann, A., Butcher, P., Maden, K., Widmer, M. (2008) Quantitative multiresidue method for about 100 veterinary drugs in different meat matrices by sub 2-μm particulate high-performance liquid chromatography coupled to time of flight mass spectrometry. J. Chromatogr. A 1194, 66–79.

    Google Scholar 

  87. Peters, R.J.B., Bolck, Y.J.C., Rutgers, P., Stolker, A.A.M., Nielen, M.W.F. (2009) Multi-residue screening of veterinary drugs in egg, fish and meat using liquid chromatography accurate mass time-of-flight mass spectrometry. J. Chromatogr. A, 1216, 8206–8216.

    Google Scholar 

  88. Ortelli, D., Cognard, E., Jan, P., Edder, P. (2009) Comprehensive fast multiresidue screening of 150 veterinary drugs in milk by ultra-performance liquid chromatography coupled to time of flight mass spectrometry. J. Chromatogr. B, 877, 2363–2374.

    Google Scholar 

  89. Pesek, J.J., Matyska, M.T., Larrabee, S. (2007) HPLC retention behavior on hydride-based stationary phases. J. Sep. Sci. 30, 637–647.

    Google Scholar 

  90. van der Heeft, E., Bolck, Y.J.C., Beumer, B., Nijrolder, A.W.J.M., Stolker, A.A.M., Nielen, M.W.F. (2009) Full-scan accurate mass selectivity of ultra-performance liquid chromatography combined with time-of-flight and orbitrap mass spectrometry in hormone and veterinary drug residue analysis. J. Am. Soc. Mass Spectrom. 20, 451–463.

    Google Scholar 

  91. Mol, H.G.J., Plaza-Bolanos, P., Zomer, P., de Rijk, T.C., Stolker, A.A.M., Mulder, P.P.J. (2008) Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes. Anal. Chem. 80, 9450–9459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Mastovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mastovska, K. (2011). Multiresidue Analysis of Antibiotics in Food of Animal Origin Using Liquid Chromatography–Mass Spectrometry. In: Zweigenbaum, J. (eds) Mass Spectrometry in Food Safety. Methods in Molecular Biology, vol 747. Humana Press. https://doi.org/10.1007/978-1-61779-136-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-136-9_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-135-2

  • Online ISBN: 978-1-61779-136-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics