Skip to main content

Self-Assemblies of Polymer–Enzyme Conjugates at Oil–Water Interfaces for Interfacial Biocatalysis

  • Protocol
  • First Online:
Book cover Nanoscale Biocatalysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

Abstract

Many biocatalysts have been shown powerful in enabling reactions among a broad range of substrates possessing very different hydrophilicity/hydrophobicity. Biphasic reaction systems, especially oil–water biphasic systems, have been commonly adopted to mediate such reactions. The greatest challenge in conducting an efficient reaction between two substrates that have to be hosted in two immiscible liquid phases is the mass transfer resistance across interfaces. Imaginably, the substrates afford the most extensive interactions at the interfacial region. The interfacial assembled enzymes, developed by conjugating water-soluble enzymes with hydrophobic polymers, are therefore expected to be efficient in catalyzing biotransformation at the organic–aqueous interfaces. This chapter describes a method in preparing and applying of such interface-assembling enzymes. A model enzyme, α-chymotrypsin (CT), is grafted with polystyrene (PS) to introduce an organic affinity, thus leading to a surfactant-like structure. The characterization of the activity and stability of the interface-assembled enzyme is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner, M. K. (1995) Biocatalysis in organic chemistry (Part II): Present and future. Trends Biotechnol. 13, 253–258.

    Article  CAS  Google Scholar 

  2. Koeller, K. M., and Wong, C. H. (2001) Enzymes for chemical synthesis. Nature 409, 232–240.

    Article  CAS  Google Scholar 

  3. Loughlin, W. A. (2000) Biotransformation in organic synthesis. Bioresour. Technol. 74, 49–62.

    Article  CAS  Google Scholar 

  4. Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 246.

    Article  Google Scholar 

  5. Blinkovsky, A. M., Martin, B. D., and Dordick, J. S. (1992) Enzymology in monophasic organic media. Curr. Opin. Biotechnol. 3, 124–129.

    Article  CAS  Google Scholar 

  6. Halling, P. J. (2000) Biocatalysis in low-water media: Understanding effects of reaction conditions. Curr. Opin. Chem. Biol. 4, 74–80.

    Article  CAS  Google Scholar 

  7. Colonna, S., Gaggero, N., Richelmi, C., and Pasta, P. (1999) Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17, 163–168.

    Article  CAS  Google Scholar 

  8. Palucki, M., Pospisil, P. J., Zhang, W., and Jacobsen, E. N. (1994) Highly enantioselective, low-temperature epoxidation of styrene. J. Am. Chem. Soc. 116, 9333–9334.

    Article  CAS  Google Scholar 

  9. Ooi, Y., Hashimoto, T., Mitsuo, N., and Satoh, T. (1985) Enzymic formation of β-alkyl glycosides by β-galactosidase from Aspergillus oryzae and its application to the synthesis of chemically unstable cardiac glycosides. Chem. Pharm. Bull. 33, 1808–1814.

    CAS  Google Scholar 

  10. Okahata, Y., and Mori, T. (1998) Transglycosylation catalyzed by a lipid-coated β-D-galactosidase in a two-phase aqueous-organic system. J. Mol. Catal. B: Enzym. 5, 119–123.

    Article  CAS  Google Scholar 

  11. Antonini, E., Carrea, G., and Cremonesi, P. (1981) Enzyme catalysed reactions in water – Organic solvent two-phase systems. Enzyme Microb. Technol. 3, 291–296.

    Article  CAS  Google Scholar 

  12. Hickel, A., Radke, C. J., and Blanch, H. W. (1999) Hydroxynitrile lyase at the diisopropyl ether/water interface: Evidence for interfacial enzyme activity. Biotechnol. Bioeng. 65, 425–436.

    Article  CAS  Google Scholar 

  13. Pier Luigi, L. (1985) Enzymes hosted in reverse micelles in hydrocarbon solution. Angew. Chem. Int. Ed. 24, 439–450.

    Article  Google Scholar 

  14. Khmelnitsky, Y. L., Gladilin, A. K., Roubailo, V. L., Martinek, K., and Levashov, A. V. M. S. (1992) Reversed micelles of polymeric surfactants in nonpolar organic solvents. A new microheterogeneous medium for enzymatic reactions. Eur. J. Biochem. 206, 737–745.

    Article  CAS  Google Scholar 

  15. Miyake, Y. (1996) Enzyme reaction in water-in-oil microemulsions. Colloids Surf. A 109, 255–262.

    Article  CAS  Google Scholar 

  16. Halling, P. J. (1987) Biocatalysis in multi-phase reaction mixtures containing organic liquids. Biotechnol. Adv. 5, 47–84.

    Article  CAS  Google Scholar 

  17. Chae, H. J., and Yoo, Y. J. (1997) Mathematical analysis of an enzymatic reaction in an aqueous/organic two-phase system: Tyrosinase-catalysed hydroxylation of phenol. J. Chem. Tech. Biotechnol. 70, 163–170.

    Article  CAS  Google Scholar 

  18. Ross, A. C., Bell, G., and Halling, P. J. (2000) Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism. J. Mol. Catal. B: Enzym. 8, 183–192.

    Article  CAS  Google Scholar 

  19. Verger, R. (1980) Enzyme kinetics of lipolysis. In Methods in Enzymology (Purich, D. L., ed.), Academic Press, Orlando, FL, pp. 340–392.

    Google Scholar 

  20. Yampolskaya, G., and Platikanov, D. (2006) Proteins at fluid interfaces: Adsorption layers and thin liquid films. Adv. Colloid Interface Sci. 128–130, 159–183.

    Article  Google Scholar 

  21. Milthorpe, B. K. (2005) Protein adsorption to surfaces and interfaces. In Surfaces and Interfaces for Biomaterials (Vadgama, P., ed.), Woodhead, Cambridge, pp. 763–781.

    Chapter  Google Scholar 

  22. Wang, P., Woodward, C. A., and Kaufman, E. N. (1999) Poly(ethylene glycol)-modified ligninase enhances pentachlorophenol biodegradation in water-solvent mixtures. Biotechnol. Bioeng. 64, 290–297.

    Article  CAS  Google Scholar 

  23. Vikram, M. P., and Dordick, J. S. (1994) Mechanism of extraction of chymotrypsin into isooctane at very low concentrations of aerosol OT in the absence of reversed micelles. Biotechnol. Bioeng. 43, 529–540.

    Article  Google Scholar 

  24. Vazquez-Duhalt, R., Fedorak, P. M., and Westlake, D. W. S. (1992) Role of enzyme hydrophobicity in biocatalysis in organic solvents. Enzyme Microb. Technol. 14, 837–841.

    Article  CAS  Google Scholar 

  25. Matsushita, M., Irino, T., Komoda, T., and Sakagishi, Y. (1993) Determination of proteins by a reverse biuret method combined with the copper-bathocuproine chelate reaction. Clin. Chim. Acta 216, 103–111.

    Article  CAS  Google Scholar 

  26. Gabel, D. (1974) Active site titration of immobilized chymotrypsin with a fluorogenic reagent. FEBS Lett. 49, 280–281.

    Article  CAS  Google Scholar 

  27. Delmar, E. G., Largman, C., Brodrick, J. W., and Geokas, M. C. (1979) A sensitive new substrate for chymotrypsin. Anal. Biochem. 99, 316–320.

    Article  CAS  Google Scholar 

  28. Zhu, G., and Wang, P. (2004) Polymer–enzyme conjugates can self-assemble at oil/water interfaces and effect interfacial biotransformations. J Am. Chem. Soc. 126, 11132–11133.

    Article  CAS  Google Scholar 

  29. Zhu, G., and Wang, P. (2005) Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene. J. Biotechnol. 117, 195–202.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Science Foundation (CTS-0214769) and the American Chemical Society PRF Program (36726-G4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, G., Wang, P. (2011). Self-Assemblies of Polymer–Enzyme Conjugates at Oil–Water Interfaces for Interfacial Biocatalysis. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics