Skip to main content

Immobilization of Enzymes on Fumed Silica Nanoparticles for Applications in Nonaqueous Media

  • Protocol
  • First Online:
Nanoscale Biocatalysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

Abstract

Enzymatic catalysis in nonaqueous media is considered as an attractive tool for the preparation of a variety of organic compounds of commercial interest. This approach is advantageous for numerous reasons including the enhanced stability of some substrates and products in solvents, sometimes improved selectivity of the enzyme, and reduction of unwanted water-dependent side reactions since little water is present. Due to the poor solubility of enzymes in these media, mass transfer limitations are sometimes present, leading to low apparent catalytic activity. Immobilization on solid supports has been successfully applied to overcome enzyme solubility issues by increasing the accessibility of substrates to the enzymes’ active sites. We have developed a simple immobilization protocol that uses fumed silica as support. Fumed silica is an inexpensive nanostructured material with unique properties including large surface area and exceptional adsorptive affinity for organic macromolecules. Our protocol is performed in two main steps. First, the enzyme molecules are physically adsorbed on the surface of the non-porous fumed silica nanoparticles with the participation of silanol groups (Si–OH) and second, water is removed by lyophilization. The protocol has been successfully applied to both s. Carlsberg and Candida antarctica lipase B (CALB). The resulting fumed silica-based nanobiocatalysts of these two enzymes were tested for catalytic activity in hexane. The transesterification of N-acetyl-l-phenylalanine ethyl ester was the model reaction for s. Carlsberg nanobiocatalysts. The simple esterification of geraniol and the enantioselective transesterification of (RS)-1-phenylethanol were the model reactions for CALB nanobiocatalysts. The observed catalytic activities were remarkably high and even exceeded those of commercially available preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross, R. A., Kumar, A., and Kalra, B. (2001) Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 101, 2097–2124.

    Article  CAS  Google Scholar 

  2. Gross, R. A., and Kalra, B. (2002) Biodegradable polymers for the environment. Science 297, 803–807.

    Article  CAS  Google Scholar 

  3. Barahona, D., Pfromm, P. H., and Rezac, M. E. (2006) Effect of water activity on the lipase catalyzed esterification of geraniol in ionic liquid [bmim]PF6. Biotechnol. Bioeng. 93, 318–324.

    Article  CAS  Google Scholar 

  4. Bartling, K., Thompson, J. U. S., Pfromm, P. H., Czermak, P., and Rezac, M. E. (2001) Lipase-catalyzed synthesis of geranyl acetate in n-hexane with membrane-mediated water removal. Biotechnol. Bioeng. 75, 676–681.

    Article  CAS  Google Scholar 

  5. Gotor, V. (2002) Biocatalysis applied to the preparation of pharmaceuticals. Org. Process Res. Dev. 6, 420–426.

    Article  CAS  Google Scholar 

  6. Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 241–246.

    Article  CAS  Google Scholar 

  7. Ghanem, A. (2007) Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron 63, 1721–1754.

    Article  CAS  Google Scholar 

  8. Klibanov, A. M. (1997) Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15, 97–101.

    Article  CAS  Google Scholar 

  9. Persson, M., Wehtje, E., and Adlercreutz, P. (2002) Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents. ChemBioChem 3, 566–571.

    Article  CAS  Google Scholar 

  10. Long, J., Hutcheon, G. A., and Cooper, A. I. (2007) Combinatorial discovery of reusable noncovalent supports for enzyme immobilization and nonaqueous catalysis. J. Comb. Chem. 9, 399–406.

    Article  CAS  Google Scholar 

  11. Chen, B., Miller, E. M., Miller, L., Maikner, J. J., and Gross, R. A. (2007) Effects of macroporous resin size on Candida antarctica lipase B adsorption, fraction of active molecules, and catalytic activity for polyester synthesis. Langmuir 23, 1381–1387.

    Article  CAS  Google Scholar 

  12. Chen, B., Miller, M. E., and Gross, R. A. (2007) Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. Langmuir 23, 6467–6474.

    Article  CAS  Google Scholar 

  13. Wurges, K., Pfromm, P. H., Rezac, M. E., and Czermak, P. (2005) Activation of subtilisin Carlsberg in hexane by lyophilization in the presence of fumed silica. J. Mol. Catal. B Enzym. 34, 18–24.

    Article  Google Scholar 

  14. Pfromm, P. H., Rezac, M. E., Wurges, K., and Czermak, P. (2007) Fumed silica activated subtilisin Carlsberg in hexane in a packed-bed reactor. AIChE J. 53, 237–242.

    Article  CAS  Google Scholar 

  15. Cruz, J. C., Pfromm, P. H., and Rezac, M. E. (2009) Immobilization of Candida antarctica lipase B on fumed silica. Process Biochem. 44, 62–69.

    Article  CAS  Google Scholar 

  16. Gun’ko, V. M., Mironyuk, I. F., Zarko, V. I., Voronin, E. F., Turov, V. V., Pakhlov, E. M., Goncharuk, E. V., Nychiporuk, Y. M., Vlasova, N. N., Gorbik, P. P., Mishchuk, O. A., Mishchuk, O. A., Chuiko, A. A., Kulik, T. V., Palyanytsya, B. B., Pakhovchishin, S. V., Skubiszewska-Zieba, J., Janusz, W., Turov, A. V., and Leboda, R. (2005) Morphology and surface properties of fumed silicas. J. Colloid Interface Sci. 289, 427–445.

    Article  Google Scholar 

  17. Voronin, E. F., Gun’ko, V. M., Guzenko, N. V., Pakhlov, E. M., Nosach, L. V., Leboda, R., Skubiszewska-Zieba, J., Malysheva, M. L., Borysenko, M. V., and Chuiko, A. A. (2004) Interaction of poly(ethylene oxide) with fumed silica. J. Colloid Interface Sci. 279, 326–340.

    Article  CAS  Google Scholar 

  18. Gun’ko, V. M., Voronin, E. F., Nosach, L. V., Pakhlov, E. M., Guzenko, N. V., Leboda, R., and Skubiszewska-Zieba, J. (2006) Adsorption and migration of poly(vinyl pyrrolidone) at a fumed silica surface. Adsorption Sci. Technol. 24, 143–157.

    Article  Google Scholar 

  19. Gun’ko, V. M., Mikhailova, I. V., Zarko, V. I., Gerashchenko, I. I., Guzenko, N. V., Janusz, W., Leboda, R., and Chibowski, S. (2003) Study of interaction of proteins with fumed silica in aqueous suspensions by adsorption and photon correlation spectroscopy methods. J. Colloid Interface Sci. 260, 56–69.

    Article  Google Scholar 

  20. Bosley, J. A., and Peilow, A. D. (1997) Immobilization of lipases on porous polypropylene: Reduction in esterification efficiency at low loading. J. Am. Oil Chem. Soc. 74, 107–111.

    Article  CAS  Google Scholar 

  21. Neidhart, D. J., and Petsko, G. A. (1988) The refined crystal-structure of subtilisin Carlsberg at 2.5 A resolution. Protein Eng. 2, 271–276.

    Article  CAS  Google Scholar 

  22. Uppenberg, J., Hansen, M. T., Patkar, S., and Jones, T. A. (1994) Sequence, crystal-structure determination and refinement of 2 crystal forms of lipase-B from Candida antarctica. Structure 2, 293–308.

    Article  CAS  Google Scholar 

  23. Koutsopoulos, S., van der Oost, J., and Norde, W. (2005) Structural features of a hyperthermostable endo-beta-1, 3-glucanase in solution and adsorbed on “invisible” particles. Biophys. J. 88, 467–474.

    Article  CAS  Google Scholar 

  24. Shaw, A. K., and Pal, S. K. (2007) Activity of subtilisin Carlsberg in macromolecular crowding. J. Photochem. Photobiol. B Biol. 86, 199–206.

    Article  CAS  Google Scholar 

  25. Sate, D., Janssen, M. H. A., Stephens, G., Sheldon, R. A., Seddon, K. R., and Lu, J. R. (2007) Enzyme aggregation in ionic liquids studied by dynamic light scattering and small angle neutron scattering. Green Chem. 9, 859–867.

    Article  CAS  Google Scholar 

  26. Chen, B., Hu, J., Miller, E. M., Xie, W. C., Cai, M. M., and Gross, R. A. (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: Catalysts for polyester synthesis. Biomacromolecules 9, 463–471.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Pfromm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cruz, J.C., Würges, K., Kramer, M., Pfromm, P.H., Rezac, M.E., Czermak, P. (2011). Immobilization of Enzymes on Fumed Silica Nanoparticles for Applications in Nonaqueous Media. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics