Skip to main content

Preparation and Characterization of Single-Enzyme Nanogels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

Abstract

Enzymes have been incorporated in nanostructures in order to provide robust catalysts for valuable reactions, particularly those performed under harsh and denaturing conditions. This chapter describes the encapsulation of enzymes in polyacrylamide nanogels by a two-step in situ polymerization process for preparing robust biocatalysts. The first step in this process is the generation of vinyl groups on the enzyme surface, while the second step involves in situ polymerization using acrylamide as the monomer. Encapsulation of the enzyme in the hydrophilic, porous, and flexible polyacrylamide gel of several nanometers thick would help to both give a significantly enhanced thermostability and prevent the removal of essential water by polar solvents. The hydrophilic flexible polymer shell also allows the protein structure to undergo necessary conformational transitions during the catalytic reaction and, at the same time, impose marginal mass transfer restrictions for the substrates entering across the polymer shell. The effectiveness of this method is demonstrated with horseradish peroxidase (HRP), carbonic anhydrase, and lipase. The impacts of such an encapsulation on the activity and stability of enzymes are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim, J., Grate, J. W., and Wang, P. (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol. 26, 639–646.

    Article  CAS  Google Scholar 

  2. Kim, J., Grate, J. W., and Wang, P. (2006) Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026.

    Article  CAS  Google Scholar 

  3. Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 241–246.

    Article  CAS  Google Scholar 

  4. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., and Witholt, B. (2001) Industrial biocatalysis today and tomorrow. Nature 409, 258–268.

    Article  CAS  Google Scholar 

  5. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F., and Willner, I. (2003) “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 1877–1881.

    Article  CAS  Google Scholar 

  6. Vriezema, D. M., Aragonès, M. C., Elemans, J. A. A. W., Cornelissen, J. J. L. M., Rowan, A. E., and Nolte, R. J. M. (2005) Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489.

    Article  CAS  Google Scholar 

  7. Wu, L., and Payne, G. F. (2004) Biofabrication: Using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol. 22, 593–599.

    Article  CAS  Google Scholar 

  8. Rosi, N. L., and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562.

    Article  CAS  Google Scholar 

  9. Stephanopoulos, N., Solis, E. O. P., and Stephanopoulos, G. (2005) Nanoscale process systems engineering: Toward molecular factories, synthetic cells, and adaptive devices. AIChE J. 51, 1858–1869.

    Article  CAS  Google Scholar 

  10. Kinbara, K., and Aida, T. (2005) Toward intelligent molecular machines: Directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400.

    Article  CAS  Google Scholar 

  11. Pohorille, A., and Deamer, D. (2002) Artificial cells: Prospects for biotechnology. Trends Biotechnol. 20, 123–128.

    Article  CAS  Google Scholar 

  12. Tanaka, M., and Sackmann, E. (2005) Polymer-supported membranes as models of the cell surface. Nature 437, 656–663.

    Article  CAS  Google Scholar 

  13. Zaks, A., and Klibanov, A. M. (1984) Enzymatic catalysis in organic media at 100°C. Science 224, 1249–1251.

    Article  CAS  Google Scholar 

  14. Garza-Ramos, G., Darszon, A., Tuena de Gomez-Puyou, M., and Gomez-Puyou, A. (1989) Catalysis and thermostability of mitochondrial F1-ATPase in toluene-phospholipid-low-water systems. Biochemistry 28, 3177–3182.

    Article  CAS  Google Scholar 

  15. Volkin, D. B., Staubli, A., Langer, R., and Klibanov, A. M. (1991) Enzyme thermoinactivation in anhydrous organic solvents. Biotechnol. Bioeng. 37, 843–853.

    Article  CAS  Google Scholar 

  16. Song, J. K., and Rhee, J. S. (2001) Enhancement of stability and activity of phospholipase A1 in organic solvents by directed evolution. Biochim. Biophys. Acta 1547, 370–378.

    Article  CAS  Google Scholar 

  17. Zhong, Z., Liu, J. L. C., Dinterman, L. M., Finkelman, M. A. J., Mueller, W. T., Rollence, M. L., Whitlow, M., and Wong, C. H. (1991) Engineering subtilisin for reaction in dimethylformamide. J. Am. Chem. Soc. 113, 683–684.

    Article  CAS  Google Scholar 

  18. Knubovets, T., Osterhout, J. J., and Klibanov, A. M. (1999) Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. Biotechnol. Bioeng. 63, 242–248.

    Article  CAS  Google Scholar 

  19. Yan, M., Ge, J., Liu, Z., and Ouyang, P. (2006) Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 128, 11008–11009.

    Article  CAS  Google Scholar 

  20. Ge, J., Lu, D., Wang, J., and Liu, Z. (2009) Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 10, 1612–1618.

    Article  CAS  Google Scholar 

  21. Kim, J., and Grate, J. W. (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3, 1219–1222.

    Article  CAS  Google Scholar 

  22. Yan, M., Liu, Z., Lu, D., and Liu, Z. (2007) Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature. Biomacromolecules 8, 560–565.

    Article  CAS  Google Scholar 

  23. Ge, J., Lu, D. N., Wang, J., and Liu, Z. (2008) Molecular fundamentals of enzyme nanogels. J. Phys. Chem. B 112, 14319–14324.

    Article  CAS  Google Scholar 

  24. Davis, J. C., and Averill, B. A. (1981) Isolation from bovine spleen of a green heme protein with properties of myeloperoxidase. J. Biol. Chem. 256, 5992–5996.

    CAS  Google Scholar 

  25. Pocker, Y., and Stone, J. T. (1965) The catalytic versatility of erythrocyte carbonic anhydrase. The enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. J. Am. Chem. Soc. 87, 5497–5498.

    Article  CAS  Google Scholar 

  26. Pocker, Y., and Stone, J. T. (1967) The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 6, 668–678.

    Article  CAS  Google Scholar 

  27. López, N., Pernas, M. A., Pastrana, L. M., Sánchez, A., Valero, F., and Rúa, M. L. (2004) Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. Influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnol. Prog. 20, 65–73.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from the National High-tech R&D Program (863 Program; project number 2008AA05Z406) and National Natural Science Foundation (project number 20776076). The authors extend their thanks to Prof. Yunfeng Lu at Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, for his helps and suggestions on the research into nanostructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ge, J., Yan, M., Lu, D., Liu, Z., Liu, Z. (2011). Preparation and Characterization of Single-Enzyme Nanogels. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics