Biochemical Studies on Human Rad51-Mediated Homologous Recombination

  • Youngho Kwon
  • Weixing Zhao
  • Patrick SungEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 745)


Rad51-mediated pairing between homologous DNA sequences during homologous recombination (HR) plays pivotal roles in DNA double-strand break repair. The multi-step process occurs through cooperation of Rad51 and a number of accessory protein factors. The development of various biochemical analyses with the requisite purified factors provides an opportunity to understand the molecular mechanisms of HR. In this chapter, we describe detailed procedures of in vitro assays using human Rad51, a polypeptide derived from the BRCA2 protein, and the Hop2–Mnd1 complex, to examine (1) homologous DNA pairing, (2) Rad51 targeting to single-stranded DNA, (3) stabilization of the Rad51 nucleoprotein filament, and (4) duplex capture by the Rad51 nucleoprotein filament. These methods are invaluable for delineating the functional interplay of HR factors.

Key words

Rad51 BRCA2 Hop2–Mnd1 homologous recombination presynaptic filament homologous DNA pairing 



The studies described in this chapter have been supported by research grants from the US National Institutes of Health.


  1. 1.
    San Filippo, J., Sung, P., and Klein, H. (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229–257.PubMedCrossRefGoogle Scholar
  2. 2.
    Symington, L.S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66, 630–670.PubMedCrossRefGoogle Scholar
  3. 3.
    Sung, P., Krejci, L., Van Komen, S., and Sehorn, M.G. (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278, 42729–42732.PubMedCrossRefGoogle Scholar
  4. 4.
    Sheridan, S.D., Yu, X., Roth, R., et al. (2008) A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res 36, 4057–4066.PubMedCrossRefGoogle Scholar
  5. 5.
    Sung, P., and Robberson, D.L. (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453–461.PubMedCrossRefGoogle Scholar
  6. 6.
    San Filippo, J., Chi, P., Sehorn, M.G., Etchin, J., Krejci, L., and Sung, P. (2006) Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J Biol Chem 281, 11649–11657.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, X., and Haber, J.E. (2004) Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol 2, E21.PubMedCrossRefGoogle Scholar
  8. 8.
    Bochkarev, A., and Bochkareva, E. (2004) From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14, 36–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Sigurdsson, S., Trujillo, K., Song, B., Stratton, S., and Sung, P. (2001) Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J Biol Chem 276, 8798–8806.PubMedCrossRefGoogle Scholar
  10. 10.
    Sugiyama, T., Zaitseva, E.M., and Kowalczykowski, S.C. (1997) A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272, 7940–7945.PubMedCrossRefGoogle Scholar
  11. 11.
    Shinohara, A., and Ogawa, T. (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391, 404–407.PubMedCrossRefGoogle Scholar
  12. 12.
    Sung, P. (1997) Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272, 28194–28197.PubMedCrossRefGoogle Scholar
  13. 13.
    Sung, P. (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11, 1111–1121.PubMedCrossRefGoogle Scholar
  14. 14.
    Sigurdsson, S., Van Komen, S., Bussen, W., Schild, D., Albala, J.S., and Sung, P. (2001) Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15, 3308–3318.PubMedCrossRefGoogle Scholar
  15. 15.
    Robertson, R.B., Moses, D.N., Kwon, Y., et al. (2009) Structural transitions within human Rad51 nucleoprotein filaments. Proc Natl Acad Sci USA 106, 12688–12693.PubMedCrossRefGoogle Scholar
  16. 16.
    Chi, P., Van Komen, S., Sehorn, M.G., Sigurdsson, S., and Sung, P. (2006) Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair 5, 381–391.PubMedCrossRefGoogle Scholar
  17. 17.
    Sung, P., and Stratton, S.A. (1996) Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 271, 27983–27986.PubMedCrossRefGoogle Scholar
  18. 18.
    Bugreev, D.V., and Mazin, A.V. (2004) Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc Natl Acad Sci USA 101, 9988–9993.PubMedCrossRefGoogle Scholar
  19. 19.
    Chi, P., San Filippo, J., Sehorn, M.G., Petukhova, G.V., and Sung, P. (2007) Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev 21, 1747–1757.PubMedCrossRefGoogle Scholar
  20. 20.
    Mazin, A.V., Alexeev, A.A., and Kowalczykowski, S.C. (2003) A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278, 14029–14036.PubMedCrossRefGoogle Scholar
  21. 21.
    Pezza, R.J., Voloshin, O.N., Vanevski, F., and Camerini-Otero, R.D. (2007) Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev 21, 1758–1766.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenUSA

Personalised recommendations