Advertisement

Reconstituting the Key Steps of the DNA Double-Strand Break Repair In Vitro

  • Matthew J. Rossi
  • Dmitry V. Bugreev
  • Olga M. Mazina
  • Alexander V. MazinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 745)

Abstract

Double-stranded DNA breaks (DSB), the most harmful type of DNA lesions, cause cell death and genome instability. Homologous recombination repairs DSB using homologous DNA sequences as templates. Here we describe a set of reactions that lead to reconstitution of the double-stranded DNA break repair process in vitro employing purified human homologous recombination proteins and DNA polymerase η. Reconstitution of critical steps of DSB repair in vitro may help to better understand the mechanisms of recombinational DNA repair and the role of various human homologous recombination proteins in this process.

Key words

Homologous recombination DNA strand exchange branch migration Holliday junction joint molecules D-loops 

Notes

Acknowledgments

This work was supported by the NIH Grant CA100839, MH084119, and the Leukemia and Lymphoma Society Scholar Award 1054-09 (to AVM) and NIH Grant F31 AG033484-01 (to MJR).

References

  1. 1.
    San Filippo, J., Sung, P., and Klein, H. (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229–257.PubMedCrossRefGoogle Scholar
  2. 2.
    Krogh, B.O., and Symington, L.S. (2004) Recombination proteins in yeast. Annu Rev Genet 38, 233–271.PubMedCrossRefGoogle Scholar
  3. 3.
    Kowalczykowski, S.C. (2008) Structural biology: snapshots of DNA repair. Nature 453, 463–466.PubMedCrossRefGoogle Scholar
  4. 4.
    Pâques, F., and Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63, 349–404.PubMedGoogle Scholar
  5. 5.
    Allers, T., and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Hunter, N., and Kleckner, N. (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Bugreev, D.V., Hanaoka, F., and Mazin, A.V. (2007) Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14, 746–753.PubMedCrossRefGoogle Scholar
  8. 8.
    Sambrook, J., and Russell, D.W. (2001) Molecular cloning: a laboratory manual, 3rd Edition (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).Google Scholar
  9. 9.
    Sigurdsson, S., Trujillo, K., Song, B., Stratton, S., and Sung, P. (2001) Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J Biol Chem 276, 8798–8806.PubMedCrossRefGoogle Scholar
  10. 10.
    Kumar, J.K., and Gupta, R.C. (2004) Strand exchange activity of human recombination protein Rad52. Proc Natl Acad Sci USA 101, 9562–9567.PubMedCrossRefGoogle Scholar
  11. 11.
    Mazina, O.M., and Mazin, A.V. (2004) Human Rad54 protein stimulates DNA strand exchange activity of hRad51 protein in the presence of Ca2+. J Biol Chem 279, 52042–52051.PubMedCrossRefGoogle Scholar
  12. 12.
    Henricksen, L.A., Umbricht, C.B., and Wold, M.S. (1994) Recombinant replication protein A: expression, complex formation, and functional characterization [published erratum appears in J Biol Chem 1994 Jun 10;269(23):16519]. J Biol Chem 269, 11121–11132.PubMedGoogle Scholar
  13. 13.
    Masutani, C., Kusumoto, R., Iwai, S., and Hanaoka, F. (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase eta. EMBO J 19, 3100–3109.PubMedCrossRefGoogle Scholar
  14. 14.
    Bugreev, D.V., Yu, X., Egelman, E.H., and Mazin, A.V. (2007) Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21, 3085–3094.PubMedCrossRefGoogle Scholar
  15. 15.
    Bugreev, D.V., and Mazin, A.V. (2004) Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc Natl Acad Sci USA 101, 9988–9993.PubMedCrossRefGoogle Scholar
  16. 16.
    Richardson, C. (2005) RAD51, genomic stability, and tumorigenesis. Cancer Lett 218, 127–139.PubMedCrossRefGoogle Scholar
  17. 17.
    Sommers, J.A., Rawtani, N., Gupta, R., Bugreev, D.V., Mazin, A.V., Cantor, S.B., and Brosh, R.M., Jr. (2009) FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem 284, 7505–7517.PubMedCrossRefGoogle Scholar
  18. 18.
    Sugiyama, T., Kantake, N., Wu, Y., and Kowalczykowski, S.C. (2006) Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J 25, 5539–5548.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, L., and Hickson, I.D. (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874.PubMedCrossRefGoogle Scholar
  20. 20.
    Raynard, S., Bussen, W., and Sung, P. (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281, 13861–13864.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matthew J. Rossi
    • 1
  • Dmitry V. Bugreev
    • 1
  • Olga M. Mazina
    • 1
  • Alexander V. Mazin
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations