Understanding the Immunoglobulin Locus Specificity of Hypermutation

  • Vera Batrak
  • Artem Blagodatski
  • Jean-Marie BuersteddeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 745)


The immunoglobulin (Ig) genes of B cells are diversified at high rate by point mutations whereas the non-Ig genes of B cells accumulate no or significantly fewer mutations. Ig hypermutations are critical for the affinity maturation of antibodies for most of jawed vertebrates and also contribute to the primary Ig diversity repertoire formation in some species. How the hypermutation activity is specifically targeted to the Ig loci is a long-standing debate. Here we describe a new experimental approach to investigate the locus specificity of Ig hypermutation using the chicken B-cell line DT40. One feature is the use of a green fluorescent protein (GFP) gene as a mutation reporter. Some nucleotide changes produced by somatic hypermutation can cripple the GFP gene which leads to a decrease or loss of the green fluorescence. Therefore such changes can be easily quantified by fluorescence-activated cell sorting (FACS). Another advantage of this approach is the targeted integration of the mutation reporter into a defined chromosomal position. This system allowed us to identify a 10 kb sequence within the Ig light chain (IgL) locus, which is both necessary and sufficient to activate hypermutation in the neighboring reporter gene. We have called this sequence Diversification Activator (DIVAC) and postulated that similar cis-acting sequences exist in the heavy and light chain Ig loci of all jawed vertebrate species. Our experimental system promises further insight into the molecular mechanism of Ig hypermutation. For example, it may be possible to identify smaller functional motifs within DIVAC and address the role of putative transacting binding factors by gene knock-outs.

Key words

Somatic hypermutation immunoglobulin gene AID B cell DT40 DIVAC 



AB was supported by the grant no. 02.740.11.5016 from the Russian Ministry of Science.


  1. 1.
    Tonegawa, S. (1983) Somatic generation of antibody diversity. Nature 302, 575–581.PubMedCrossRefGoogle Scholar
  2. 2.
    McKean, D., Huppi, K., Bell, M., Staudt, L., Gerhard, W., and Weigert, M. (1984) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci USA 81, 3180–3184.PubMedCrossRefGoogle Scholar
  3. 3.
    Kocks, C., and Rajewsky, K. (1988) Stepwise intraclonal maturation of antibody affinity through somatic hypermutation. Proc Natl Acad Sci USA 85, 8206–8210.PubMedCrossRefGoogle Scholar
  4. 4.
    Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563.PubMedCrossRefGoogle Scholar
  5. 5.
    Peters, A., and Storb, U. (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Di Noia, J.M., and Neuberger, M.S. (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76, 1–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Petersen-Mahrt, S.K., Harris, R.S., and Neuberger, M.S. (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Sale, J.E., Calandrini, D.M., Takata, M., Takeda, S., and Neuberger, M.S. (2001) Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926.PubMedCrossRefGoogle Scholar
  9. 9.
    Arakawa, H., Saribasak, H., and Buerstedde, J.M. (2004) Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol 2, E179.PubMedCrossRefGoogle Scholar
  10. 10.
    Di Noia, J.M., and Neuberger, M.S. (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48.PubMedCrossRefGoogle Scholar
  11. 11.
    Saribasak, H., Saribasak, N.N., Ipek, F.M., Ellwart, J.W., Arakawa, H., and Buerstedde, J.M. (2006) Uracil DNA glycosylase disruption blocks Ig gene conversion and induces transition mutations. J Immunol 176, 365–371.PubMedGoogle Scholar
  12. 12.
    Rada, C., Williams, G.T., Nilsen, H., Barnes, D.E., Lindahl, T., and Neuberger, M.S. (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12, 1748–1755.PubMedCrossRefGoogle Scholar
  13. 13.
    Shen, H.M., Peters, A., Baron, B., Zhu, X., and Storb, U. (1998) Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752.PubMedCrossRefGoogle Scholar
  14. 14.
    Pasqualucci, L., Neumeister, P., Goossens, T., Nanjangud, G., Chaganti, R.S., Küppers, R., and Dalla-Favera, R. (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346.PubMedCrossRefGoogle Scholar
  15. 15.
    Gopal, A.R., and Fugmann, S.D. (2008) AID-mediated diversification within the IgL locus of chicken DT40 cells is restricted to the transcribed IgL gene. Mol Immunol 45, 2062–2068.PubMedCrossRefGoogle Scholar
  16. 16.
    Gordon, M.S., Kanegai, C.M., Doerr, J.R., and Wall, R. (2003) Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci USA 100, 4126–4131.PubMedCrossRefGoogle Scholar
  17. 17.
    Müschen, M., Re, D., Jungnickel, B., Diehl, V., Rajewsky, K., and Küppers, R. (2000) Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J Exp Med 192, 1833–1840.PubMedCrossRefGoogle Scholar
  18. 18.
    Pasqualucci, L., Migliazza, A., Fracchiolla, N., William, C., Neri, A., Baldini, L., et al. (1998) BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA 95, 11816–11821.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, M., Duke, J.L., Richter, D.J., Vinuesa, C.G., Goodnow, C.C., Kleinstein, S.H., et al. (2008) Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845.PubMedCrossRefGoogle Scholar
  20. 20.
    Storb, U., Peters, A., Klotz, E., Kim, N., Shen, H.M., Hackett, J., et al. (1998) Immunoglobulin transgenes as targets for somatic hypermutation. Int J Dev Biol 42, 977–982.PubMedGoogle Scholar
  21. 21.
    Klix, N., Jolly, C.J., Davies, S.L., Brüggemann, M., Williams, G.T., and Neuberger, M.S. (1998) Multiple sequences from downstream of the J kappa cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain. Eur J Immunol 28, 317–326.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, S.Y., and Schatz, D.G. (2007) Targeting of AID-mediated sequence diversification by cis-acting determinants. Adv Immunol 94, 109–125.PubMedCrossRefGoogle Scholar
  23. 23.
    Blagodatski, A., Batrak, V., Schmidl, S., Schoetz, U., Caldwell, R.B., Arakawa, H., et al. (2009) A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet 5, e1000332.PubMedCrossRefGoogle Scholar
  24. 24.
    Arakawa, H., Hauschild, J., and Buerstedde, J.M. (2002) Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306.PubMedCrossRefGoogle Scholar
  25. 25.
    Buerstedde, J.M., and Takeda, S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67, 179–188.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vera Batrak
    • 1
  • Artem Blagodatski
    • 2
  • Jean-Marie Buerstedde
    • 3
    Email author
  1. 1.HildesheimGermany
  2. 2.Institute of Protein Research, Russian Academy of Sciences, Russian FederationMoscowRussia
  3. 3.Istra, Moscow RegionRussia

Personalised recommendations