Advertisement

Isolation of Meiotic Recombinants from Mouse Sperm

  • Francesca ColeEmail author
  • Maria JasinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 745)

Abstract

Homologous recombination during meiosis is critical for the formation of gametes. Recombination is initiated by programmed DNA double-strand breaks which preferentially occur at hotspots dispersed throughout the genome. These double-strand breaks are repaired from the homolog, resulting in either a crossover or noncrossover product. Multiple noncrossover events are required for homolog pairing, and at least one crossover is critical for proper chromosome segregation at the first meiotic division. Consequently, homologous recombination in meiosis occurs at high frequencies. This chapter describes how to characterize crossovers and noncrossovers at a hotspot in mice using allele-specific PCR. Amplification of recombinant products directly from sperm DNA is a powerful approach to determine recombination frequencies and map recombination breakpoints, providing insight into homologous recombination mechanisms.

Key words

Meiotic recombination sperm crossover noncrossover hotspot allele-specific PCR F1 hybrid mice gene conversion homolog 

Notes

Acknowledgments

We thank members of the Jasin Laboratory, especially Erika Brunet, and Scott Keeney and members of his laboratory, especially Liisa Kauppi and Esther de Boer, for comments on the manuscript and suggestions on the techniques described in this chapter. This work was supported by a Ruth L. Kirschstein National Research Service Award F32HD51392 (F.C.) and National Institutes of Health Grant RO1HD40916 (M.J.).

References

  1. 1.
    Coop, G., Wen, X., Ober, C., Pritchard, J.K., and Przeworski, M. (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398.PubMedCrossRefGoogle Scholar
  2. 2.
    Fearnhead, P., and Smith, N.G. (2005) A novel method with improved power to detect recombination hotspots from polymorphism data reveals multiple hotspots in human genes. Am J Hum Genet 77, 781–794.PubMedCrossRefGoogle Scholar
  3. 3.
    Khil, P.P., and Camerini-Otero, R.D. (2010) Genetic crossovers are predicted accurately by the computed human recombination map. PLoS Genet 6, e1000831.PubMedCrossRefGoogle Scholar
  4. 4.
    Myers, S., Bottolo, L., Freeman, C., McVean, G., and Donnelly, P. (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324.PubMedCrossRefGoogle Scholar
  5. 5.
    Cole, F., Keeney, S., and Jasin, M. (2010) Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev 24, 1201–1207.PubMedCrossRefGoogle Scholar
  6. 6.
    Kauppi, L., Jeffreys, A.J., and Keeney, S. (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5, 413–424.PubMedCrossRefGoogle Scholar
  7. 7.
    Baudat, F., and de Massy, B. (2007) Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res 15, 565–577.PubMedCrossRefGoogle Scholar
  8. 8.
    Allers, T., and Lichten, M. (2001) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell 8, 225–231.PubMedCrossRefGoogle Scholar
  9. 9.
    Hunter, N., and Kleckner, N. (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70.PubMedCrossRefGoogle Scholar
  10. 10.
    McMahill, M.S., Sham, C.W., and Bishop, D.K. (2007) Synthesis-dependent strand annealing in meiosis. PLoS Biol 5, e299.PubMedCrossRefGoogle Scholar
  11. 11.
    Borner, G.V., Kleckner, N., and Hunter, N. (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J., and Stahl, F.W. (1983) The double-strand-break repair model for recombination. Cell 33, 25–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Bishop, D.K., and Zickler, D. (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Hubert, R., MacDonald, M., Gusella, J., and Arnheim, N. (1994) High resolution localization of recombination hot spots using sperm typing. Nat Genet 7, 420–424.PubMedCrossRefGoogle Scholar
  15. 15.
    Jeffreys, A.J., Murray, J., and Neumann, R. (1998) High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol Cell 2, 267–273.PubMedCrossRefGoogle Scholar
  16. 16.
    Jeffreys, A.J., Tamaki, K., MacLeod, A., Monckton, D.G., Neil, D.L., and Armour, J.A. (1994) Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6, 136–145.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffreys, A.J., and May, C.A. (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 36, 151–156.PubMedCrossRefGoogle Scholar
  18. 18.
    Guillon, H., and de Massy, B. (2002) An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat Genet 32, 296–299.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeffreys, A.J., Kauppi, L., and Neumann, R. (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29, 217–222.PubMedCrossRefGoogle Scholar
  20. 20.
    Guillon, H., Baudat, F., Grey, C., Liskay, R.M., and de Massy, B. (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20, 563–573.PubMedCrossRefGoogle Scholar
  21. 21.
    Holloway, K., Lawson, V.E., and Jeffreys, A.J. (2006) Allelic recombination and de novo deletions in sperm in the human beta-globin gene region. Hum Mol Genet 15, 1099–1111.PubMedCrossRefGoogle Scholar
  22. 22.
    Cole, F., Keeney, S., and Jasin, M. (2010) Comprehensive, fine-scale dissection of homologous recombination outcomes at a hot spot in mouse meiosis. Mol Cell 10, 700–710.CrossRefGoogle Scholar
  23. 23.
    Kauppi, L., May, C.A., and Jeffreys, A.J. (2009) Analysis of meiotic recombination products from human sperm. Methods Mol Biol 557, 323–355.PubMedCrossRefGoogle Scholar
  24. 24.
    Jeffreys, A.J., Neumann, R., and Wilson, V. (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485.PubMedCrossRefGoogle Scholar
  25. 25.
    Jeffreys, A.J., and Neumann, R. (1997) Somatic mutation processes at a human minisatellite. Hum Mol Genet 6, 129–132; 134–126.PubMedCrossRefGoogle Scholar
  26. 26.
    Baudat, F., and de Massy, B. (2007) Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet 3, e100.PubMedCrossRefGoogle Scholar
  27. 27.
    Bois, P.R. (2007) A highly polymorphic meiotic recombination mouse hot spot exhibits incomplete repair. Mol Cell Biol 27, 7053–7062.PubMedCrossRefGoogle Scholar
  28. 28.
    Kauppi, L., Jasin, M., and Keeney, S. (2007) Meiotic crossover hotspots contained in haplotype block boundaries of the mouse genome. Proc Natl Acad Sci USA 104, 13396–13401.PubMedCrossRefGoogle Scholar
  29. 29.
    Kelmenson, P.M., Petkov, P., Wang, X., Higgins, D.C., Paigen, B.J., and Paigen, K. (2005) A torrid zone on mouse chromosome 1 containing a cluster of recombinational hotspots. Genetics 169, 833–841.PubMedCrossRefGoogle Scholar
  30. 30.
    Paigen, K., Szatkiewicz, J.P., Sawyer, K., Leahy, N., Parvanov, E.D., Ng, S.H., Graber, J.H., Broman, K.W., and Petkov, P.M. (2008) The recombinational anatomy of a mouse chromosome. PLoS Genet 4, e1000119.PubMedCrossRefGoogle Scholar
  31. 31.
    Baudat, F., and de Massy, B. (2009) Parallel detection of crossovers and noncrossovers in mouse germ cells. Methods Mol Biol 557, 305–322.PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng, N., Monckton, D.G., Wilson, G., Hagemeister, F., Chakraborty, R., Connor, T.H., Siciliano, M.J., and Meistrich, M.L. (2000) Frequency of minisatellite repeat number changes at the MS205 locus in human sperm before and after cancer chemotherapy. Environ Mol Mutagen 36, 134–145.PubMedCrossRefGoogle Scholar
  33. 33.
    Kreader, C.A. (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62, 1102–1106.PubMedGoogle Scholar
  34. 34.
    Newton, C.R., Graham, A., Heptinstall, L.E., Powell, S.J., Summers, C., Kalsheker, N., Smith, J.C., and Markham, A.F. (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17, 2503–2516.PubMedCrossRefGoogle Scholar
  35. 35.
    Meistrich, M.L., Reid, B.O., and Barcellona, W.J. (1976) Changes sperm culei during sperimogensis and epidymal maturation. Exp Cell Res 99, 72–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Wood, W.I., Gitschier, J., Lasky, L.A., and Lawn, R.M. (1985) Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci USA 82, 1585–1588.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Developmental Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations