Skip to main content

Proteomic Analysis of RNA Interference Induced Knockdown Plant

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 744))

Abstract

RNA interference (RNAi) is a useful research tool for the specific deletion, or knockdown, of target genes that can be exploited both in cultured plant cells and in whole plants. In RNAi, hairpin RNA (hpRNA)-transduced lines are used to identify loss-of-function mutations in multi-copy genes with redundant functions in polyploid plant species. Plants transformed with hpRNA exhibit a range of phenotypes resulting from complete knockdown to weak suppression or tissue- and stage-specific knockdown. Functional genomics using proteomic analysis with two-dimensional gel electrophoresis (2-DE) and mass spectrometry provides valuable information about altered levels of expression of specific genes in biological samples. Here, we describe the proteomic analysis of Oryza sativa (Os) thioredoxin m (Ostrxm) knockdown using 2-DE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Holmgren, A. (1989) Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264, 13963–13966.

    PubMed  CAS  Google Scholar 

  2. Balmer, Y., and Buchanan, B. B. (2002) Yet another plant thioredoxin. Trends Plant Sci. 7, 191–193.

    Article  PubMed  CAS  Google Scholar 

  3. Collin, V., Lamkemeyer, P., Miginiac-Maslow, M., Hirasawa, M., Knaff, D. B., Dietz, K. J., and Issakidis-Bourguet, E. (2004) Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol. 136, 4088–4095.

    Article  PubMed  CAS  Google Scholar 

  4. Gelhaye, E., Rouhier, N., and Jacquot, J. P. (2004) The thioredoxin h system of higher plants. Plant Physiol. Biochem. 42, 265–271.

    Article  PubMed  CAS  Google Scholar 

  5. Collin, V., Issakidis-Bourguet, E., Marchand, C., Hirasawa, M., Lancelin, J. M., Knaff, D. B., and Miginiac-Maslow, M. (2003) The Arabidopsis plastidial thioredoxins: New functions and new insights into specificity. J. Biol. Chem. 278, 23747–23752.

    Article  PubMed  CAS  Google Scholar 

  6. Mestres-Ortega, D., and Meyer, Y. (1999) The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240, 307–316.

    Article  PubMed  CAS  Google Scholar 

  7. Ruelland, E., and Miginiac-Maslow, M. (1999) Regulation of chloroplast enzyme activities by thioredoxins: Activation or relief from inhibition? Trends Plant Sci. 4, 136–141.

    Article  PubMed  Google Scholar 

  8. Clancey, C. J., and Gilbert, H. F. (1987) Thiol/disulfide exchange in the thioredoxin-catalyzed reductive activation of spinach chloroplast fructose-1,6-bisphosphatase. Kinetics and thermodynamics. J. Biol. Chem. 262, 13545–13549.

    PubMed  CAS  Google Scholar 

  9. Droux, M., Jacquot, J. P., Miginac-Maslow, M., Gadal, P., Huet, J. C., Crawford, N. A., Yee, B. C., and Buchanan, B. B. (1987) Ferredoxin-thioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: Purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch. Biochem. Biophys. 252, 426–439.

    Article  PubMed  CAS  Google Scholar 

  10. Droux, M., Miginiac-Maslow, M., Jacquot, J. P., Gadal, P., Crawford, N. A., Kosower, N. S., and Buchanan, B. B. (1987) Ferredoxin-thioredoxin reductase: A catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation. Arch. Biochem. Biophys. 256, 372–380.

    Article  PubMed  CAS  Google Scholar 

  11. Scheibe, R., and Anderson, L. E. (1981) Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim. Biophys. Acta. 636, 58–64.

    Article  PubMed  CAS  Google Scholar 

  12. Geck, M. K., Larimer, F. W., and Hartman, F. C. (1996) Identification of residues of spinach thioredoxin f that influence interactions with target enzymes. J. Biol. Chem. 271, 24736–24740.

    Article  PubMed  CAS  Google Scholar 

  13. Hodges, M., Miginiac-Maslow, M., Decottignies, P., Jacquot, J. P., Stein, M., Lepiniec, L., Cretin, C., and Gadal, P. (1994) Purification and characterization of pea thioredoxin f expressed in Escherichia coli. Plant Mol. Biol. 26, 225–234.

    Article  PubMed  CAS  Google Scholar 

  14. Muller, E. G., and Buchanan, B. B. (1989) Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans. J. Biol. Chem. 264, 4008–4014.

    PubMed  CAS  Google Scholar 

  15. Duek, P. D., and Wolosiuk, R. A. (2001) Rapeseed chloroplast thioredoxin-m. Modulation of the affinity for target proteins. Biochim. Biophys. Acta. 1546, 299–311.

    Article  PubMed  CAS  Google Scholar 

  16. Issakidis-Bourguet, E., Mouaheb, N., Meyer, Y., and Miginiac-Maslow, M. (2001) Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. Plant J. 25, 127–135.

    Article  PubMed  CAS  Google Scholar 

  17. Macrae, I., Zhou, K., Li, F., Repic, A., Brooks, A., Cande, W., Adams, P., and Doudna, J. (2006) Structural basis for double-stranded RNA processing by dicer. Science 311, 195–198.

    Article  PubMed  CAS  Google Scholar 

  18. Chi, Y. H., Moon, J. C., Park, J. H., Kim, H. S., Zulfugarov, I. S., Fanata, W. I., Jang, H. H., Lee, J. R., Lee, Y. M., Kim, S. T., Chung, Y. Y., Lim, C. O., Kim, J. Y., Yun, D. J., Lee, C. H., Lee, K. O., and Lee, S. Y. (2008) Abnormal chloroplast development and growth inhibition in rice thioredoxin m knock-down plants. Plant Physiol. 148, 808–817.

    Article  PubMed  CAS  Google Scholar 

  19. Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  20. Nitsch, J. P., and Nitsch, C. (1969) Haploid plants from pollen grains. Science 163, 85–87.

    Article  PubMed  CAS  Google Scholar 

  21. Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K. (2000) Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 479, 79–82.

    Article  PubMed  CAS  Google Scholar 

  22. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Okaley, B. R., Kirsch, D. R., and Morris, R. (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361–363.

    Article  Google Scholar 

  24. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from MEST/NRF to the WCU program (R32-10148), CFGC (CG3313-1) and NRL (M10600000205-06J0000-20510), and Technology Development Program for Agriculture and Forestry (609004-5) of ARPC, MIFAFF, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyun Oh Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, S.Y., Lee, K.O. (2011). Proteomic Analysis of RNA Interference Induced Knockdown Plant. In: Kodama, H., Komamine, A. (eds) RNAi and Plant Gene Function Analysis. Methods in Molecular Biology, vol 744. Humana Press. https://doi.org/10.1007/978-1-61779-123-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-123-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-122-2

  • Online ISBN: 978-1-61779-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics