Skip to main content

CFTR Folding Consortium: Methods Available for Studies of CFTR Folding and Correction

  • Protocol
  • First Online:
Cystic Fibrosis

Abstract

The CFTR Folding Consortium (CFC) was formed in 2004 under the auspices of the Cystic Fibrosis Foundation and its drug discovery and development affiliate, CFF Therapeutics. A primary goal of the CFC is the development and distribution of reagents and assay methods designed to better understand the mechanistic basis of mutant CFTR misfolding and to identify targets whose manipulation may correct CFTR folding defects. As such, reagents available from the CFC primarily target wild-type CFTR NBD1 and its common variant, F508del, and they include antibodies, cell lines, constructs, and proteins. These reagents are summarized here, and two protocols are described for the detection of cell surface CFTR: (a) an assay of the density of expressed HA-tagged CFTR by ELISA and (b) the generation and use of an antibody to CFTR’s first extracellular loop for the detection of endogenous CFTR. Finally, we highlight a systematic collection of assays, the CFC Roadmap, which is being used to assess the cellular locus and mechanism of mutant CFTR correction. The Roadmap queries CFTR structure–function relations at levels ranging from purified protein to well-differentiated human airway primary cultures.

K.W. Peters and T. Okiyoneda contributed equally to this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, F., Kartner, N., and Lukacs, G. L. (1998) Limited proteolysis as a probe for arrested conformational maturation of delta F508 CFTR. Nat Struct Biol 5, 180–183.

    Article  PubMed  CAS  Google Scholar 

  3. Du, K., Sharma, M., and Lukacs, G. L. (2005) The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 12, 17–25.

    Article  PubMed  CAS  Google Scholar 

  4. Denning, G. M., Anderson, M. P., Amara, J. F., Marshall, J., Smith, A. E., and Welsh, M. J. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764.

    Article  PubMed  CAS  Google Scholar 

  5. Welch, W. J. (2004) Role of quality control pathways in human diseases involving protein misfolding. Semin Cell Dev Biol 15, 31–38.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, X., Venable, J., LaPointe, P., Hutt, D. M., Koulov, A. V., Coppinger, J., et al. (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, Y., Nijbroek, G., Sullivan, M. L., McCracken, A. A., Watkins, S. C., Michaelis, S., et al. (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12, 1303–1314.

    PubMed  CAS  Google Scholar 

  8. Sun, F., Mi, Z., Condliffe, S. B., Bertrand, C. A., Gong, X., Lu, X., et al. (2008) Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia. FASEB J 22, 3255–3263.

    Article  PubMed  CAS  Google Scholar 

  9. DeCarvalho, A. C., Gansheroff, L. J., and Teem, J. L. (2002) Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta F508. J Biol Chem 277, 35896–35905.

    Article  PubMed  CAS  Google Scholar 

  10. Teem, J. L., Carson, M. R., and Welsh, M. J. (1996) Mutation of R555 in CFTR-delta F508 enhances function and partially corrects defective processing. Receptors Channels 4, 63–72.

    PubMed  CAS  Google Scholar 

  11. Chang, X. B., Cui, L., Hou, Y. X., Jensen, T. J., Aleksandrov, A. A., Mengos, A., et al. (1999) Removal of multiple arginine-framed trafficking signals overcomes misprocessing of delta F508 CFTR present in most patients with cystic fibrosis. Mol Cell 4, 137–142.

    Article  PubMed  CAS  Google Scholar 

  12. Pedemonte, N., Lukacs, G. L., Du, K., Caci, E., Zegarra-Moran, O., Galietta, L. J., et al. (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 115, 2564–2571.

    Article  PubMed  CAS  Google Scholar 

  13. Van Goor, F., Straley, K. S., Cao, D., Gonzalez, J., Hadida, S., Hazlewood, A., et al. (2006) Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 290, L1117–L1130.

    Article  PubMed  Google Scholar 

  14. Pyle, L. C., Balch, W. E., Lukacs, G., Braakman, I., Guggino, W. B., Thomas, P. J., et al. (2010) Developing a cellular road map for correctors of protein misfolding: a consortium approach. Nat Rev Drug Disc. (submitted).

    Google Scholar 

  15. Lukacs, G. L., Segal, G., Kartner, N., Grinstein, S., and Zhang, F. (1997) Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem J 328 (Pt 2), 353–361.

    PubMed  CAS  Google Scholar 

  16. Prince, L. S., Peter, K., Hatton, S. R., Zaliauskiene, L., Cotlin, L. F., Clancy, J. P., et al. (1999) Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem 274, 3602–3609.

    Article  PubMed  CAS  Google Scholar 

  17. Benharouga, M., Haardt, M., Kartner, N., and Lukacs, G. L. (2001) COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments. J Cell Biol 153, 957–970.

    Article  PubMed  CAS  Google Scholar 

  18. Denning, G. M., Ostedgaard, L. S., Cheng, S. H., Smith, A. E., and Welsh, M. J. (1992) Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J Clin Invest 89, 339–349.

    Article  PubMed  CAS  Google Scholar 

  19. Denning, G. M., Ostedgaard, L. S., and Welsh, M. J. (1992) Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J Cell Biol 118, 551–559.

    Article  PubMed  CAS  Google Scholar 

  20. Sharma, M., Pampinella, F., Nemes, C., Benharouga, M., So, J., Du, K., et al. (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164, 923–933.

    Article  PubMed  CAS  Google Scholar 

  21. Glozman, R., Okiyoneda, T., Mulvihill, C. M., Rini, J. M., Barriere, H., and Lukacs, G. L. (2009) N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J Cell Biol 184, 847–862.

    Article  PubMed  CAS  Google Scholar 

  22. Barriere, H., Bagdany, M., Bossard, F., Okiyoneda, T., Wojewodka, G., Gruenert, D., et al. (2009) Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles. Mol Biol Cell 20, 3125–3141.

    Article  PubMed  CAS  Google Scholar 

  23. Robert, R., Carlile, G. W., Pavel, C., Liu, N., Anjos, S. M., Liao, J., et al. (2008) Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharm 73, 478–489.

    CAS  Google Scholar 

  24. Carlile, G. W., Robert, R., Zhang, D., Teske, K. A., Luo, Y., Hanrahan, J. W., et al. (2007) Correctors of protein trafficking defects identified by a novel high-throughput screening assay. ChemBioChem 8, 1012–1020.

    Article  PubMed  CAS  Google Scholar 

  25. Voller, A., Bidwell, D., Rose, N. R., Friedman, H., and Fahey, J. L. (1986) Enzyme-linked immunosorbent assay, in Manual of Clinical Laboratory Immunology, vol. 3. American Society of Microbiology, Washington, DC, pp. 99–109.

    Google Scholar 

  26. Harlow, E., and Lane, D. (1988) Immunoprecipitation, in Antibodies: A Practical Approach.

    Google Scholar 

  27. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Resources providing support for this work in the Frizzell lab include grants from the NIH (DK068196 and DK 072506) and the Cystic Fibrosis Foundation (CFF R883-CR07 and FRIZZE05XX0). Experimental work in the laboratory of Gergely Lukacs was funded by the NIH, Cystic Fibrosis Folding Consortium, CIHR, and CFI. Tsukasa Okiyoneda was supported by a postdoctoral fellowship from the Canadian Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Frizzell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Peters, K.W. et al. (2011). CFTR Folding Consortium: Methods Available for Studies of CFTR Folding and Correction. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 742. Humana Press. https://doi.org/10.1007/978-1-61779-120-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-120-8_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-119-2

  • Online ISBN: 978-1-61779-120-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics