Skip to main content

Analysis of CFTR Folding and Degradation in Transiently Transfected Cells

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

Misfolding and premature degradation of F508del-CFTR is the major cause of cystic fibrosis. Components of the ubiquitin-proteasome system function on the surface of the endoplasmic reticulum to select misfolded proteins for degradation. The folding status of F508del-CFTR is monitored by at least two ER quality control checkpoints. The ER-associated Derlin-1/RMA1 E3 complex appears to recognize folding defects in CFTR that involve misassembly of NBD1 into a complex with the R-domain. In contrast, the cytosolic Hsp70/CHIP E3 complex appears to sense folding defects that occur after synthesis of NBD2. Herein we describe methods that allow for the study of how modulation of these ER quality control factors by siRNA impacts CFTR folding and degradation. The experimental system described employs transiently transfected HEK293 cells and is utilized to monitor the biogenesis of CFTR by both Western blot and pulse chase studies. Methods to detect complexes formed between CFTR folding intermediates and ER quality control factors will also be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, L., Aleksandrov, L., Chang, X. B., Hou, Y. X., He, L., Hegedus, T., et al. (2007) Domain interdependence in the biosynthetic assembly of CFTR. J. Mol. Biol. 365, 981–994.

    Article  PubMed  CAS  Google Scholar 

  2. Du, K., Sharma, M., and Lukacs, G. L. (2005) The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol. 12, 17–25.

    Article  PubMed  CAS  Google Scholar 

  3. Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., et al. (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA 105, 3256–3261.

    Article  PubMed  CAS  Google Scholar 

  4. Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D. M. (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505.

    Article  PubMed  CAS  Google Scholar 

  5. Ward, C. L., and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25710–25718.

    PubMed  CAS  Google Scholar 

  6. Rosser, M. F., Grove, D. E., Chen, L., and Cyr, D. M. (2008) Assembly and misassembly of CFTR: Folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of MSD1 and MSD2. Mol. Biol. Cell 19, 4570–4579.

    Article  PubMed  CAS  Google Scholar 

  7. Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X. B., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879–6887.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, X., Venable, J., LaPointe, P., Hutt, D. M., Koulov, A. V., Coppinger, J., et al. (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815.

    Article  PubMed  CAS  Google Scholar 

  9. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M., and Cyr, D. M. (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell. Biol. 3, 100–105.

    Article  PubMed  CAS  Google Scholar 

  10. Younger, J. M., Chen, L., Ren, H. Y., Rosser, M. F., Turnbull, E. L., Fan, C. Y., et al. (2006) Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582.

    Article  PubMed  CAS  Google Scholar 

  11. Dalal, S., Rosser, M. F., Cyr, D. M., and Hanson, P. I. (2004) Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Mol. Biol. Cell 15, 637–648.

    Article  PubMed  CAS  Google Scholar 

  12. Morito, D., Hirao, K., Oda, Y., Hosokawa, N., Tokunaga, F., Cyr, D. M., et al. (2008) Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTR{Delta}F508. Mol. Biol. Cell 19, 1328–1336.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, B., Heath-Engel, H., Zhang, D., Nguyen, N., Thomas, D. Y., Hanrahan, J. W., et al. (2008) BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. Cell 133, 1080–1092.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane E. Grove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grove, D.E., Rosser, M.F., Watkins, R.L., Cyr, D.M. (2011). Analysis of CFTR Folding and Degradation in Transiently Transfected Cells. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics