Profiling the miRNome: Detecting Global miRNA Expression Levels with DNA Microarrays

  • Peter WhiteEmail author
Part of the Neuromethods book series (NM, volume 58)


The ability to profile the miRNome (global microRNA/miRNA expression levels) accurately has become essential for multiple aspects of biological research. However, this process is complicated by the short length of the mature miRNA, the existence of multiple intermediate miRNA forms, and highly similar mature miRNA sequences amongst miRNA family members. Here, we review the process of experimental design and sample preparation for a miRNome profiling experiment. The essential need for careful sample quality control is also discussed. Several solutions have emerged using DNA microarray hybridization-based platforms that have been developed specifically for miRNA expression analysis. Commercially available miRNA expression profiling platforms from Affymetrix, Agilent, Exiqon, and Invitrogen are compared and contrasted. Finally, we detail the steps for data preprocessing, normalization, and statistical analysis to identify differentially expressed miRNAs. This review will help guide potential users of this relatively new technology in making informed choices during the miRNome profiling process, from initial experimental design to final data analysis.

Key words

microRNA miRNA miRNome Expression profiling DNA microarray Normalization Probe design Labeling chemistry 


  1. 1.
    Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009;136:642–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development. Neuron 2009;64:303–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009;4:199–227.PubMedCrossRefGoogle Scholar
  4. 4.
    Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology 2009;127:291–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu N, Olson EN. MicroRNA regulatory ­networks in cardiovascular development. Developmental cell 2010;18:510–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.Google Scholar
  8. 8.
    Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000;403:901–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research 2008;36:D154–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Davison TS, Johnson CD, Andruss BF. Analyzing micro-RNA expression using microarrays. Methods Enzymol 2006;411:14–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Shi L, Reid LH, Jones WD, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature biotechnology 2006;24:1151–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Philippidou D, Schmitt M, Moser D, et al. Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer research 2010;70:4163–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Scaruffi P, Stigliani S, Moretti S, et al. Transcribed-Ultra Conserved Region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 2009;9:441.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou Y, Chen L, Barlogie B, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proceedings of the National Academy of Sciences of the United States of America 2010;107:7904–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006;7:3.PubMedCrossRefGoogle Scholar
  18. 18.
    Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl MW. mRNA and microRNA quality control for RT-qPCR analysis. Methods (San Diego, Calif 2010;50:237–43.Google Scholar
  19. 19.
    Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 2006;27:126–39.PubMedCrossRefGoogle Scholar
  20. 20.
    White P, Kaestner KH. Gene expression analysis in diabetes research. Methods Mol Biol 2009;560:239–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu CG, Spizzo R, Calin GA, Croce CM. Expression profiling of microRNA using oligo DNA arrays. Methods (San Diego, Calif 2008;44:22–30.Google Scholar
  22. 22.
    Ibberson D, Benes V, Muckenthaler MU, Castoldi M. RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol 2009;9:102.PubMedCrossRefGoogle Scholar
  23. 23.
    Xi Y, Nakajima G, Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007;13:1668–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Li J, Smyth P, Flavin R, et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 2007;7:36.PubMedCrossRefGoogle Scholar
  25. 25.
    Goswami RS, Waldron L, Machado J, et al. Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples. BMC Biotechnol 2010;10:47.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu A, Tetzlaff MT, Vanbelle P, et al. MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp Pathol 2009;2:519–27.PubMedGoogle Scholar
  27. 27.
    Todt S, Blohm DH. Immobilization chemistries. Methods Mol Biol 2009;529:81–100.PubMedCrossRefGoogle Scholar
  28. 28.
    Dufva M. Fabrication of DNA microarray. Methods Mol Biol 2009;529:63–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003;9:1274–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America 2004;101:9740–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu CG, Calin GA, Volinia S, Croce CM. MicroRNA expression profiling using microarrays. Nat Protoc 2008;3:563–78.PubMedCrossRefGoogle Scholar
  32. 32.
    Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proceedings of the National Academy of Sciences of the United States of America 2004;101:11755–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Miska EA, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome biology 2004;5:R68.PubMedCrossRefGoogle Scholar
  34. 34.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nature methods 2004;1:155–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Kong W, Zhao JJ, He L, Cheng JQ. Strategies for profiling microRNA expression. J Cell Physiol 2009;218:22–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol 2008;26:70–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Stears RL, Getts RC, Gullans SR. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol Genomics 2000;3:93–9.PubMedGoogle Scholar
  38. 38.
    Hughes TR, Mao M, Jones AR, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature biotechnology 2001;19:342–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang H, Ach RA, Curry B. Direct and sensitive miRNA profiling from low-input total RNA. RNA 2007;13:151–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaur H, Arora A, Wengel J, Maiti S. Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 2006;45:7347–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006;12:913–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Goff LA, Yang M, Bowers J, Getts RC, Padgett RW, Hart RP. Rational probe optimization and enhanced detection strategy for microRNAs using microarrays. RNA Biol 2005;2:93–100.PubMedCrossRefGoogle Scholar
  43. 43.
    Sato F, Tsuchiya S, Terasawa K, Tsujimoto G. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PloS one 2009;4:e5540.PubMedCrossRefGoogle Scholar
  44. 44.
    Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nature reviews 2006;7:55–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Grant GR, Manduchi E, Stoeckert CJ, Jr. Analysis and management of microarray gene expression data. Curr Protoc Mol Biol 2007;Chapter 19:Unit 19 6.Google Scholar
  46. 46.
    Tissot C. Analysis of miRNA content in total RNA preparations using the Agilent 2100 bioanalyzer. Agilent Technologies Application Note 2008;
  47. 47.
    Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic acids research 2002;30:e15.PubMedCrossRefGoogle Scholar
  49. 49.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics (Oxford, England) 2003;19:185–93.Google Scholar
  50. 50.
    Lopez-Romero P, Gonzalez MA, Callejas S, Dopazo A, Irizarry RA. Processing of Agilent microRNA array data. BMC Res Notes 2010;3:18.PubMedCrossRefGoogle Scholar
  51. 51.
    Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics (Oxford, England) 2003;4:249–64.Google Scholar
  52. 52.
    Pradervand S, Weber J, Thomas J, et al. Impact of normalization on miRNA microarray expression profiling. RNA 2009;15:493–501.PubMedCrossRefGoogle Scholar
  53. 53.
    Rao Y, Lee Y, Jarjoura D, et al. A comparison of normalization techniques for microRNA microarray data. Statistical applications in genetics and molecular biology 2008;7:Article22.Google Scholar
  54. 54.
    Hua YJ, Tu K, Tang ZY, Li YX, Xiao HS. Comparison of normalization methods with microRNA microarray. Genomics 2008;92:122–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 2001;98:5116–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 2003;100:9440–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 2004;3:Article3.Google Scholar
  58. 58.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 1995;57:289–300.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Microbial PathogenesisThe Research Institute at Nationwide Children’s Hospital and The Ohio State UniversityColumbusUSA

Personalised recommendations