Cloning Small RNAs

  • Eric J. DevorEmail author
  • Lingyan Huang
Part of the Neuromethods book series (NM, volume 58)


Small, noncoding RNAs have proven to be powerful and ubiquitous agents of gene regulation in eukaryotic genomes. Since their initial discovery, several methods have been developed for directly cloning and sequencing these tiny RNA species. These cloning methods are presented along with a discussion of ways to enhance cloning efficiency and success. In addition, major advances in massively parallel, next-generation sequencing methods are presented as they impact small RNA studies. Finally, results of the application of one of the extant in vitro cloning methods to a marsupial mammal model are presented.

Key words

Small RNA microRNA Cloning Deep sequencing Marsupial 


  1. 1.
    Napoli C, Lemieux C, Jorgensen R Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990; 2: 279–89.PubMedCrossRefGoogle Scholar
  2. 2.
    van der Krol AR, Mur LA, Beld M, et al. Flavinoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990; 2: 291–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Romano N, Macino G Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology 1992; 6: 3343–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Cogoni , Macino G Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci USA 1997; 94: 10233–8.Google Scholar
  5. 5.
    Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elgans. Nature 1998; 391: 806–11.Google Scholar
  6. 6.
    Meister G, Tuschl T Mechanisms of gene silencing by double stranded RNA. Nature 2004; 431: 343–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee RC, Feinbaum RL, Ambros V The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–54.Google Scholar
  8. 8.
    Wightman B, Ha I, Ruvkun G Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern-formation in C. elegans. Cell 1993; 75: 855–62.Google Scholar
  9. 9.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Lau NC, Lim LP, Weinstein EG, Bartel DP An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–62.Google Scholar
  11. 11.
    Lee R, Ambros V An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–4.Google Scholar
  12. 12.
    Reinhart BJ, Weinstein EG, Rhoades M, Bartel B, Bartel DP MicroRNAs in plants. Genes and Development 2002; 16: 1616–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Du T, Zamore PD MicroPrimer: the biogenesis and function of microRNA. Development 2005; 132: 4645–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim DH, Rossi JJ Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007: 8: 173–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Agaard L, Rossi JJ RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007; 59: 75–86.CrossRefGoogle Scholar
  16. 16.
    Kim VN Small RNAs: Classification, biogenesis, and function. Mol Cells 2005; 19:1–15.Google Scholar
  17. 17.
    Tissot C Analysis if miRNA contant in total RNA preparations using the Agilent 2100 bioanalyzer. Agilent Technologies Publication 5989–7870EN.Google Scholar
  18. 18.
    Berezikov E, Cuppen E, Plasterk RHA Approaches to microRNA discovery. Nature Genetics 2006; 38: S2–S7.PubMedCrossRefGoogle Scholar
  19. 19.
    Fu H, Tie Y, Xu C, et al. Identification of human fetal liver miRNAs by a novel method. FEBS Lett 2005; 579: 3849–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Pfeffer S, Lagos-Quintana M, Tuschl T Cloning of small RNA molecules. In: Ausubel FM, Brent R, Kingston RE, et al., eds. Current Protocols in Molecular Biology, Vol. 4. 2003: 26.4.1–26.4.18.Google Scholar
  21. 21.
    Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. Proc. Natl Acad Sci USA 2006; 103: 3687–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Lau NC, Lim LP, Weinstein EG, Bartel DP An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858-62.PubMedCrossRefGoogle Scholar
  23. 23.
    Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2005; 2: 269–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Aravin A, Tuschl T Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 2005; 579: 5830–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen PY, Manninga H, Slanchev K, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Devel 2005; 19: 1288–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW Serial analysis of gene expression. Science 1995; 270: 484–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Pak J, Fire A Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 2007; 315: 241–4.Google Scholar
  28. 28.
    Devor EJ, Huang L, Abdukarimov A, Abdurakhmonov IY Methodologies for in vitro cloning of small RNAs and application for plant genome(s). Intl J Plant Genomics 2009; ID 915061.Google Scholar
  29. 29.
    Griffiths-Jones S miRBase: the microRNA sequence database. Methods Mol Biol. 2006; 342: 129–38.PubMedGoogle Scholar
  30. 30.
    Griffiths-Jones S, Saini HK, Dongen SV, Enright AJ miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36 (Database Issue): D154–D158.Google Scholar
  31. 31.
    Ambros V, A uniform system for microRNA annotation. RNA 2003; 9: 277–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Margulies M, Egholm M, Altman WE Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437: 376–80.PubMedGoogle Scholar
  33. 33.
    Mardis E The impact of next-generation sequencing technology on genetics. Trends in Genetics 2008; 24: 133–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Parameswaran P, Jalili R, Tao L, et al. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res. 2007; 35: e130.PubMedCrossRefGoogle Scholar
  35. 35.
    Hamady M, Walker JJ, Harris JK, et al., Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods 2008; 5: 235–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Ruby JG, Jan C, Palyer C et al., Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006; 127: 1193–207.Google Scholar
  37. 37.
    Hutchinson CA DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 2007; 35: 6227–37.Google Scholar
  38. 38.
    Shendure J, Porreca GJ, Reppas NB, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005; 309: 1728–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Mikkelsen TS, Wakefield MJ, Aken B, et al., Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 2007; 447: 167–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Devor EJ, Samollow PB. In vitro and in silico annotation of conserved and non-conserved microRNAs in the genome of the marsupial Monodelphis domestica. J Hered 2008; 99: 66–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Warren WC, Hillier LW, Marshall Graves, JA Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008; 453: 175–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Devor EJ, Huang L, Samollow PB piRNA-like RNAs in the marsupial Monodelphis domestica identify transcription clusters and likely marsupial transposon targets. Mammalian Genome 2008; 19: 581–586.PubMedCrossRefGoogle Scholar
  43. 43.
    O’Donnell KA, Boeke JD Mighty Piwis defend the germline against genome intruders. Cell 2007; 129: 37–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Kim VN Small RNAs just got bigger, Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes and Development 2006; 20: 1993–7.Google Scholar
  45. 45.
    Brennecke J, Aravin AA, Stark A, et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128: 1–15.Google Scholar
  46. 46.
    Aravin AA, Hannon GJ, Brennecke J The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007; 318: 761–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyUniversity of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations