Rapid Cloning and Validation of MicroRNA Shuttle Vectors: A Practical Guide

  • Ryan L. Boudreau
  • Sara E. Garwick-Coppens
  • Jian Liu
  • Lindsay M. Wallace
  • Scott Q. HarperEmail author
Part of the Neuromethods book series (NM, volume 58)


MicroRNAs (miRNAs) have emerged as important modulators of eukaryotic gene expression through a process called RNA interference (RNAi). Over the last several years, a large amount of work has focused on understanding how miRNAs are expressed and processed to a biologically functional form. This knowledge has enabled the development of RNAi as a molecular tool for investigating basic biological questions or as a therapeutic technique. Artificial miRNA shuttle vectors can be engineered to mimic natural miRNAs and subsequently used to suppress any gene of interest. Here, we describe a simple method to build and functionally validate artificial miRNA shuttles.

Key words

RNAi MicroRNA miRNA, siRNA Inhibitory RNA Gene silencing Gene therapy 


  1. 1.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Fire AZ. Gene silencing by double-stranded RNA. Cell Death Differ 2007;14:1998–2012.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002;30:363–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Odling-Smee L. Complex set of RNAs found in simple green algae. Nature 2007;447:518.PubMedCrossRefGoogle Scholar
  7. 7.
    Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002;16:948–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005;30:106–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006;13:1097–101.PubMedCrossRefGoogle Scholar
  11. 11.
    Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 2004;10:1957–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115:209–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Macrae IJ, Zhou K, Li F, et al. Structural basis for double-stranded RNA processing by Dicer. Science 2006;311:195–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Marques JT, Devosse T, Wang D, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 2006;24:559–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115:199–208.PubMedCrossRefGoogle Scholar
  21. 21.
    Tolia NH, Joshua-Tor L. Slicer and the argonautes. Nat Chem Biol 2007;3:36–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007;39:380–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Davidson BL, Paulson HL. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 2004;3:145–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432:235–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002;12:735–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Zeng Y, Cai X, Cullen BR. Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 2005;392:371–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002;9:1327–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Amarzguioui M, Lundberg P, Cantin E, Hagstrom J, Behlke MA, Rossi JJ. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 2006;1:508–17.PubMedCrossRefGoogle Scholar
  31. 31.
    Harper SQ, Davidson BL. Plasmid-based RNA interference: construction of small-hairpin RNA expression vectors. Methods Mol Biol 2005;309:219–35.PubMedGoogle Scholar
  32. 32.
    Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 2006;13:494–505.PubMedCrossRefGoogle Scholar
  33. 33.
    Davidson BL, Harper SQ. Viral delivery of recombinant short hairpin RNAs. Methods Enzymol 2005;392:145–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Harper SQ, Staber PD, He X, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 2005;102:5820–5.PubMedCrossRefGoogle Scholar
  35. 35.
    McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003;21:639–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 2005;12:618–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2009;17:169–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 2009;17:1053–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537–41.PubMedCrossRefGoogle Scholar
  40. 40.
    McBride JL, Boudreau RL, Harper SQ, et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 2008;105:5868–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Silva JM, Li MZ, Chang K, et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005;37:1281–8.PubMedGoogle Scholar
  42. 42.
    Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 2005;102:13212–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Stern P, Astrof S, Erkeland SJ, Schustak J, Sharp PA, Hynes RO. A system for Cre-regulated RNA interference in vivo. Proc Natl Acad Sci U S A 2008;105:13895–900.PubMedCrossRefGoogle Scholar
  44. 44.
    Xia XG, Zhou H, Samper E, Melov S, Xu Z. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet 2006;2:e10.PubMedCrossRefGoogle Scholar
  45. 45.
    Harper SQ, Staber PD, Beck CR, et al. Optimization of feline immunodeficiency virus vectors for RNA interference. J Virol 2006;80:9371–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. RNA 2003;9:112–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004;22:326–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Li L, Lin X, Khvorova A, Fesik SW, Shen Y. Defining the optimal parameters for hairpin-based knockdown constructs. RNA 2007;13:1765–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ryan L. Boudreau
  • Sara E. Garwick-Coppens
  • Jian Liu
  • Lindsay M. Wallace
  • Scott Q. Harper
    • 1
    • 2
    Email author
  1. 1.Center for Gene Therapy, The Research Institute at Nationwide Children’s HospitalColumbusUSA
  2. 2.Department of Pediatrics and Molecular, Cellular, and Developmental Biology Graduate ProgramThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations