Identification and Characterization of Protein Complexes from Total Brain and Synaptoneurosomes: Heterogeneity of Molecular Complexes in Distinct Subcellular Domains

  • Silvia De Rubeis
  • Claudia BagniEmail author
Part of the Neuromethods book series (NM, volume 57)


Neurons are highly polarized cells characterized by subcellular microdomains: the synapses. These compartments are specialized structures and are, for certain cellular pathways, independent from the cell body. To achieve such a functional specificity, including local mRNA translation, different molecular complexes are transported along the dendrites and locally regulated. Characterization of such a molecular diversity may help to elucidate neuronal functions as well as detect differences in neuronal dysfunctions. Here, we describe a method to specifically dissect a molecular complex according to the neuronal subcellular compartment. Specifically, the complexes are isolated by immunoprecipitation of the protein of interest from brain lysates or from purified synapses (synaptoneurosomes) and identified by mass spectrometry analysis.

Key words

Immunoprecipitation Synaptoneurosomes Synaptic proteomic Neurites mRNP transport 



This study was supported by Telethon, Compagnia di San Paolo, COFIN and FWO.


  1. 1.
    Arimura, N., and Kaibuchi, K. (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8, 194–205.PubMedCrossRefGoogle Scholar
  2. 2.
    da Silva, J. S., and Dotti, C. G. (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3, 694–704.PubMedCrossRefGoogle Scholar
  3. 3.
    Ye, B., Zhang, Y., Song, W., Younger, S. H., Jan, L. Y., and Jan, Y. N. (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Conde, C., and Caceres, A. (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10, 319–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Holtmaat, A., and Svoboda, K. (2009) Experience-dependent structural synaptic ­plasticity in the mammalian brain. Nat Rev Neurosci 10, 647–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Ziv, N. E., and Garner, C. C. (2004) Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5, 385–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy, M. B., Beale, H. C., Carlisle, H. J., and Washburn, L. R. (2005) Integration of biochemical signalling in spines. Nat Rev Neurosci 6, 423–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Steward, O., and Schuman, E. M. (2003) Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–59.PubMedCrossRefGoogle Scholar
  9. 9.
    De Rubeis, S., and Bagni, C. (2008) Synaptosome. Encyclopedia of Neuroscience Eds Binder MD, Hirokawa N, Windhorst U, Hirsch, MC.Google Scholar
  10. 10.
    Hollingsworth, E. B., McNeal, E. T., Burton, J. L., Williams, R. J., Daly, J. W., and Creveling, C. R. (1985) Biochemical characterization of a ­filtered synaptoneurosome preparation from guinea pig cerebral ­cortex: cyclic adenosine 3’:5’-monophosphate-­generating systems, receptors, and enzymes. J Neurosci 5, 2240–53.PubMedGoogle Scholar
  11. 11.
    Verhage, M., McMahon, H. T., Ghijsen, W. E., Boomsma, F., Scholten, G., Wiegant, V. M., and Nicholls, D. G. (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6, 517–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Takei, K., Mundigl, O., Daniell, L., and De Camilli, P. (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133, 1237–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Nicholls, D. G. (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28, 1433–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Rao, A., and Steward, O. (1991) Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J Neurosci 11, 2881–95.PubMedGoogle Scholar
  15. 15.
    Choi, S. W., Gerencser, A. A., and Nicholls, D. G. (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109, 1179–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Nicholls, D. G., and Sihra, T. S. (1986) Synaptosomes possess an exocytotic pool of glutamate. Nature 321, 772–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Anggono, V., Smillie, K. J., Graham, M. E., Valova, V. A., Cousin, M. A., and Robinson, P. J. (2006) Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat Neurosci 9, 752–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Serulle, Y., Sugimori, M., and Llinas, R. R. (2007) Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci USA 104, 1697–702.PubMedCrossRefGoogle Scholar
  19. 19.
    Scheetz, A. J., Nairn, A. C., and Constantine-Paton, M. (2000) NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3, 211–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Bagni, C., Mannucci, L., Dotti, C. G., and Amaldi, F. (2000) Chemical stimulation of ­synaptosomes modulates alpha-Ca2+/­calmodulin-dependent protein kinase II mRNA association to polysomes. J Neurosci 20, RC76.Google Scholar
  21. 21.
    Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., and Nawa, H. (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of ­translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24, 9760–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., Witke, W., Costa-Mattioli, M., Sonenberg, N., Achsel, T., and Bagni, C. (2008) The fragile X syndrome protein represses activity-­dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Corera, A. T., Doucet, G., and Fon, E. A. (2009) Long-term potentiation in isolated dendritic spines. PLoS One 4, e6021.PubMedCrossRefGoogle Scholar
  24. 24.
    Gray, E. G., and Whittaker, V. P. (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96, 79–88.PubMedGoogle Scholar
  25. 25.
    Nagy, A., and Delgado-Escueta, A. V. (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43, 1114–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Lopes, L. V., Cunha, R. A., and Ribeiro, J. A. (1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82, 3196–203.PubMedGoogle Scholar
  27. 27.
    Ferrari, F., Mercaldo, V., Piccoli, G., Sala, C., Cannata, S., Achsel, T., and Bagni, C. (2007) The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol Cell Neurosci 34, 343–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Klemmer, P., Smit, A. B., and Li, K. W. (2009) Proteomics analysis of immuno-precipitated synaptic protein complexes. J Proteomics 72, 82–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Harlow, E., and Lane, D. E. (1988) Antibodies, A Laboratory Manual. Cold Spring Harb Lab, N.Y., 617–618.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Human GeneticsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of Molecular and Developmental GeneticsLeuvenBelgium
  3. 3.Department of Experimental Medicine and Biochemical SciencesUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations