Isolation of Synapse Subdomains by Subcellular Fractionation Using Sucrose Density Gradient Centrifugation

  • Tatsuo SuzukiEmail author
Part of the Neuromethods book series (NM, volume 57)


A protocol presents a purification of postsynaptic density (PSD), from rat brain by subcellular fractionation using solubilization of membrane with Triton X-100 and sucrose density centrifugation. The protocol also includes purification of other synapse subdomains such as synaptosome, synaptic plasma membrane, P1 (nuclei and cell debris), P2 (crude mitochondria fraction), S3 (soluble fraction), and P3 (microsomal fraction). The method presented in this text is the one established by Siekevitz group. The PSDs obtained by this method are mainly excitatory type I PSDs. The method has been widely used and is useful for biochemical analyses such as identification of proteins associated with these subdomains by proteomics methods and western blotting, and morphological analyses at the electron microscopic level.

Key words

Synaptosome Synaptic plasma membrane Postsynaptic density Subcellular fractionation Detergent-insoluble cytoskeleton Detergent-insoluble membrane 



The author learned the method of PSD purification in the Philip Siekevitz laboratory, Rockefeller University, New York. The author heartily thanks Dr. Philip Siekevitz and Marie LeDoux for their instruction.


  1. 1.
    Somerville, R. A., Merz, P. A., and Carp, R. I. (1984) The effects of detergents on the composition of postsynaptic densities, J Neurochem 43, 184–191.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen, R. S., Blomberg, F., Berzins, K., and Siekevitz, P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition, J Cell Biol 74, 181–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Wu, K., Carlin, R., and Siekevitz, P. (1986) Binding of L-[3H]glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain, J Neurochem 46, 831–841.PubMedCrossRefGoogle Scholar
  4. 4.
    Carlin, R. K., Grab, D. J., Cohen, R. S., and Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities, J Cell Biol 86, 831–845.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, T. W., Wu, K., and Black, I. B. (1995) Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy, Ann Neurol 38, 446–449.PubMedCrossRefGoogle Scholar
  6. 6.
    Hahn, C. G., Banerjee, A., Macdonald, M. L., Cho, D. S., Kamins, J., Nie, Z., Borgmann-Winter, K. E., Grosser, T., Pizarro, A., Ciccimaro, E., Arnold, S. E., Wang, H. Y., and Blair, I. A. (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses, PLoS ONE 4, e5251.PubMedCrossRefGoogle Scholar
  7. 7.
    Suzuki, T., Okumura-Noji, K., Tanaka, R., Ogura, A., Nakamura, K., Kudo, Y., and Tada, T. (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus, and cerebellum, Brain Res 619, 69–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim, T. W., Wu, K., Xu, J. L., and Black, I. B. (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy, Proc Natl Acad Sci USA 89, 11642–11644.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu, K., and Black, I. B. (1987) Regulation of molecular components of the synapse in the developing and adult rat superior cervical ­ganglion, Proc Natl Acad Sci USA 84, 8687–8691.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu, K., and Siekevitz, P. (1988) Neurochemical characteristics of a postsynaptic density fraction isolated from adult canine hippocampus, Brain Res 457, 98–112.PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki, T., Mitake, S., Okumura-Noji, K., Shimizu, H., Tada, T., and Fujii, T. (1997) Excitable membranes and synaptic transmission: postsynaptic mechanisms. Localization of alpha-internexin in the postsynaptic density of the rat brain, Brain Res 765, 74–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Matus, A., Pehling, G., Ackermann, M., and Maeder, J. (1980) Brain postsynaptic densities: the relationship to glial and neuronal filaments, J Cell Biol 87, 346–359.PubMedCrossRefGoogle Scholar
  13. 13.
    Suzuki, T., Tian, Q. B., Kuromitsu, J., Kawai, T., and Endo, S. (2007) Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis, Neurosci Res 57, 61–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotman, C. W., and Taylor, D. (1972) Isolation and structural studies on synaptic complexes from rat brain, J Cell Biol 55, 696–711.PubMedCrossRefGoogle Scholar
  15. 15.
    Nieto-Sampedro, M., Bussineau, C. M., and Cotman, C. W. (1981) Optimal concentration of iodonitrotetrazolium for the isolation of junctional fractions from rat brain, Neurochem Res 6, 307–320.PubMedCrossRefGoogle Scholar
  16. 16.
    Cotman, C. W., Banker, G., Churchill, L., and Taylor, D. (1974) Isolation of postsynaptic densities from rat brain, J Cell Biol 63, 441–455.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly, P. T., and Montgomery, P. R. (1982) Subcellular localization of the 52,000 molecular weight major postsynaptic density protein, Brain Res 233, 265–286.PubMedCrossRefGoogle Scholar
  18. 18.
    Kelly, P. T., and Cotman, C. W. (1976) Intermolecular disulfide bonds at central nervous system synaptic junctions, Biochem Biophys Res Commun 73, 858–864.PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly, P. T., and Cotman, C. W. (1981) Developmental changes in morphology and molecular composition of isolated synaptic junctional structures, Brain Res 206, 251–257.PubMedCrossRefGoogle Scholar
  20. 20.
    Lai, S. L., Chiang, S. F., Chen, I. T., Chow, W. Y., and Chang, Y. C. (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density, J Neurochem 73, 2130–2138.PubMedGoogle Scholar
  21. 21.
    Sui, C. W., Chow, W. Y., and Chang, Y. C. (2000) Effects of disulfide bonds formed during isolation process on the structure of the postsynaptic density, Brain Res 873, 268–273.PubMedCrossRefGoogle Scholar
  22. 22.
    Suzuki, T., Okumura-Noji, K., Tanaka, R., and Tada, T. (1994) Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation, J Neurochem 63, 1529–1537.PubMedCrossRefGoogle Scholar
  23. 23.
    Carlin, R. K., Grab, D. J., and Siekevitz, P. (1982) Postmortem accumulation of tubulin in postsynaptic density preparations, J Neurochem 38, 94–100.PubMedCrossRefGoogle Scholar
  24. 24.
    Cheng, H. H., Huang, Z. H., Lin, W. H., Chow, W. Y., and Chang, Y. C. (2009) Cold-induced exodus of postsynaptic proteins from dendritic spines, J Neurosci Res 87, 460–469.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, X., Serwanski, D. R., Miralles, C. P., Bahr, B. A., and De Blas, A. L. (2007) Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex, J Neurochem 102, 1329–1345.PubMedCrossRefGoogle Scholar
  26. 26.
    Ratner, N., and Mahler, H. (1983) Isolation of postsynaptic densities retaining their membrane attachment, Neuroscience 9, 631–644.PubMedCrossRefGoogle Scholar
  27. 27.
    Cho, K. O., Hunt, C. A., and Kennedy, M. B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein, Neuron 9, 929–942.PubMedCrossRefGoogle Scholar
  28. 28.
    Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W., Jr., Mercer, J. A., and Kennedy, M. B. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry, J Neurosci 20, 4069–4080.PubMedGoogle Scholar
  29. 29.
    Murphy, J. A., Jensen, O. N., and Walikonis, R. S. (2006) BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses, Brain Res 1120, 35–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Suzuki, T. (2002) Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density, Neurosci Res 44, 1–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Blomberg, F., Cohen, R. S., and Siekevitz, P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure, J Cell Biol 74, 204–225.PubMedCrossRefGoogle Scholar
  32. 32.
    Matus, A. I., and Taff-Jones, D. H. (1978) Morphology and molecular composition of isolated postsynaptic junctional structures, Proc R Soc Lond B Biol Sci 203, 135–151.PubMedCrossRefGoogle Scholar
  33. 33.
    Gurd, J. W., Gordon-Weeks, P., and Evans, W. H. (1982) Biochemical and morphological comparison of postsynaptic densities prepared from rat, hamster, and monkey brains by phase partitioning, J Neurochem 39, 1117–1124.PubMedCrossRefGoogle Scholar
  34. 34.
    Matus, A. (1981) The postsynaptic density, Trends Neurosci 4, 51–53.CrossRefGoogle Scholar
  35. 35.
    Garner, A. E., Smith, D. A., and Hooper, N. M. (2008) Visualization of detergent solubilization of membranes: implications for the isolation of rafts, Biophys J 94, 1326–1340.PubMedCrossRefGoogle Scholar
  36. 36.
    Shogomori, H., and Brown, D. A. (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly, Biol Chem 384, 1259–1263.PubMedCrossRefGoogle Scholar
  37. 37.
    Phillips, G. R., Huang, J. K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, W. S., Arndt, K., Frank, M., Gordon, R. E., Gawinowicz, M. A., Zhao, Y., and Colman, D. R. (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution, Neuron 32, 63–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Chang, H. W., and Bock, E. (1980) Pitfalls in the use of commercial nonionic detergents for the solubilization of integral membrane proteins: sulfhydryl oxidizing contaminants and their elimination, Anal Biochem 104, 112–117.PubMedCrossRefGoogle Scholar
  39. 39.
    Adam, R. M., Yang, W., Di Vizio, D., Mukhopadhyay, N. K., and Steen, H. (2008) Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis, BMC Cell Biol 9, 30.PubMedCrossRefGoogle Scholar
  40. 40.
    Fried, R. C., and Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes), J Cell Biol 78, 685–700.PubMedCrossRefGoogle Scholar
  41. 41.
    Warburg, O., and Christian, W. (1941) Isolierung and Kristallisation des Garungsferment, Biochem Z 310, 384–421.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Neuroplasticity, Institute on Aging and AdaptationShinshu University Graduate School of MedicineMatsumotoJapan

Personalised recommendations