Advertisement

Lipidomics of the Nervous System: Phospholipidomics by Liquid Chromatography Coupled to Mass Spectrometry or Tandem Mass Spectrometry

Part of the Neuromethods book series (NM, volume 57)

Abstract

Phospholipidomics by high-performance liquid chromatography coupled to electrospray mass spectrometry or tandem mass spectrometry, including sample preparation, instrumental analyses, and data interpretation, is described in the chapter.

Key words

Lipidomics Phospholipidomics Phospholipids Ether phospholipids Liquid chromatography/mass spectrometry Liquid chromatography/tandem mass spectrometry 

References

  1. 1.
    Hsu FF, Turk J. (2003) Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholine: The fragmentation processes. J. Am. Soc. Mass Spectrom. 14:352–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen S, Curcuruto O, et al. Identification of phospholipid molecular species containing two fatty acyl chains differing by 2D by negative-ion fast atom bombardment with mass-analyzed ion kinetic energy analysis. Rapid Communi. Mass Spectrom. 1992;6:454–58.CrossRefGoogle Scholar
  3. 3.
    Hsu FF, Turk J, et al. Characterization of alkylacyl, alk-1-enylacyl and lysosubclasses of glycerophosphocholine by tandem quadrupole mass spectrometry with electrospray ­ionization. J. Mass Spectrom. 2003;38:752–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Han X, Gross, R.W. Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry. J. Am. Chem. Soc. 1996;118:451–57.CrossRefGoogle Scholar
  5. 5.
    Chen S, Li, K.W. Mass spectrometric identification of molecular species of phosphatidylcholine and Lysophosphatidylcholine extracted from shark liver. J. Agric. Food Chem. 2007;55:9670–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen S. Tandem mass spectrometric approach for determining structure of molecular species of aminophospholipids. Lipids, 1997;32:85–100.PubMedCrossRefGoogle Scholar
  7. 7.
    Hsu FF, Turk J. Charge-remote and charge-driven fragmentation processes in diacyl glycerophosphoethanolamine upon low-energy collisional activation: a mechanistic proposal. J. Am. Soc. Mass Spectrom. 2000;11:892–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen S, Carvey PM, Li KW. Characterization of the molecular species of phosphatidylethanolamine from kidney of fresh water snail lymneae stagnalis by mass spectrometry. Rapid Commun. Mass Spectrom. 1999;13:2416–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen S, Li KW. Comparison of molecular species of various transphosphatidylated phosphatidylserine (PS) with bovine cortex PS by mass spectrometry. Chem. Phys. Lipids 2008;152:46–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Hsu FF, Turk J. Studies on phosphatidylserine by tandem quadrupole and multiple stage quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes. J. Am. Soc. Mass Spectrom. 2005;16: 1510–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu FF, Turk J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidy­linosiyol-4,5-bisphosphate by by electrospray ionization tandem mass spectrometry: a mechanistic study. J. Am. Soc. Mass Spectrom. 2000;11:986–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Hsu FF, Turk J. Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2000;11:437–49.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsu FF, Turk J. Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2004;15:536–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Hsu FF, Turk J. Charge-driven fragmenta­tion processes in diacyl glycerophosphatidic acid upon low-energy collisional activation: a mechanistic proposal. J. Am. Soc. Mass Spectrom. 2000;11: 797–803.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen S, Subbaiah PV. Phospholipid and fatty acid specificity of endothelial lipase: potential role of the enzyme in the delivery of docosahexaenoic acid (DHA) to tissues. Biochim. Biophys. Acta 2007;1771:1319–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Guan Z. Discovering novel brain lipids by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B. 2009;877:2814–21.CrossRefGoogle Scholar
  17. 17.
    Brugger B, Erben G, et al. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass specteometry. Proc. Natl. Acad. Sci. USA. 1997;94:2339–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Kakela R, Somerharju P, Tyynela J. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J. Neurochem. 2003;84:1051–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Gao F, Tian X, et al. Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochim. Biophys. Acta 2006;1761:667–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Pang LQ, Liang QL, et al. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J. Chromatogr. B. 2008;869:118–25.CrossRefGoogle Scholar
  21. 21.
    Pruzanski W, Lambeau L, et al. Differential hydrolysis of molecular species of lipoprotein phosphatidylcholine by group IIA, V and X secretory phospholipase A2, Biochim. Biophys. Acta 2005;1736:38–50.PubMedGoogle Scholar
  22. 22.
    Grandois JL, Marchioni E, et al. Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J. Agric. Food Chem. 2009;57:6014–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Chainon Neurotrophin Biotechnology Inc.MaltaUSA

Personalised recommendations