High-Throughput High-Content Functional Image Analysis of Neuronal Proteins Implicated in Parkinson’s Disease

  • Eva Blaas
  • Ronald E. van KesterenEmail author
Part of the Neuromethods book series (NM, volume 57)


Parkinson’s disease (PD) is characterized by the progressive loss of dopamine neurons. Here, we describe how to use human SH-SY5Y neuroblastoma cells as an in vitro cell model to study the effects of candidate PD susceptibility genes on dopamine neuron differentiation and viability. This cell model can be used to study the effects of siRNA-induced gene knockdown, either alone or in combination with PD-related cellular stressors such as MPP+, and is compatible with high-throughput cellular screening platforms such as the Cellomics ArrayScan VTI HCS Reader.

Key words

Parkinson’s disease Neurodegeneration Cellular screening High-content analysis SH-SY5Y 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine 



This work is supported by TI Pharma (project T5-207: Parkinson and Alzheimer disease: from dysregulated human brain targets towards novel therapeutics).


  1. 1.
    Lees, A. J., Hardy, J., and Revesz, T. (2009) Parkinson’s disease. Lancet 373, 2055–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Harrower, T. P., Michell, A. W., and Barker, R. A. (2005) Lewy bodies in parkinson’s disease: Protectors or perpetrators? Exp Neurol 195, 1–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Ross, C. A., and Poirier, M. A. (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl, S10–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee, F. J., and Liu, F. (2008) Genetic factors involved in the pathogenesis of parkinson’s disease. Brain Res Rev 58, 354–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Abou-Sleiman, P. M., Muqit, M. M., and Wood, N. W. (2006) Expanding insights of mitochondrial dysfunction in parkinson’s disease. Nat Rev Neurosci 7, 207–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Nicklas, W. J., Youngster, S. K., Kindt, M. V., and Heikkila, R. E. (1987) Mptp, mpp+ and mitochondrial function. Life Sci 40, 721–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Richardson, J. R., Caudle, W. M., Guillot, T. S., Watson, J. L., Nakamaru-Ogiso, E., Seo, B. B., Sherer, T. B., Greenamyre, J. T., Yagi, T., Matsuno-Yagi, A., and Miller, G. W. (2007) Obligatory role for complex i inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (mptp). Toxicol Sci 95, 196–204.PubMedCrossRefGoogle Scholar
  8. 8.
    Fitzgerald, J. C., and Plun-Favreau, H. (2008) Emerging pathways in genetic parkinson’s disease: Autosomal-recessive genes in parkinson’s disease--a common pathway? FEBS J 275, 5758–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Bossers, K., Meerhoff, G., Balesar, R., van Dongen, J. W., Kruse, C. G., Swaab, D. F., and Verhaagen, J. (2009) Analysis of gene expression in parkinson’s disease: Possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol 19, 91–107.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamamichi, S., Rivas, R. N., Knight, A. L., Cao, S., Caldwell, K. A., and Caldwell, G. A. (2008) Hypothesis-based rnai screening identifies neuroprotective genes in a parkinson’s disease model. Proc Natl Acad Sci USA 105, 728–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Simunovic, F., Yi, M., Wang, Y., Macey, L., Brown, L. T., Krichevsky, A. M., Andersen, S. L., Stephens, R. M., Benes, F. M., and Sonntag, K. C. (2009) Gene expression profiling of substantia nigra dopamine neurons: Further insights into parkinson’s disease pathology. Brain 132, 1795–809.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands

Personalised recommendations