Global Analysis of Ubiquitination

  • David Meierhofer
  • Peter KaiserEmail author
Part of the Neuromethods book series (NM, volume 57)


The covalent attachment of the small protein ubiquitin to other proteins is known to control a host of biological pathways and is emerging as an important regulatory factor in various processes specific to the nervous system. Ubiquitination is also tightly linked to most neurodegenerative disorders. A quantitative, proteome-wide view of the dynamic changes in ubiquitin modification associated with neuronal activity states and various stages of neurodegenerative disorders is therefore desired. Advances in quantitative mass spectrometry and the development of new biological tools make these approaches feasible for many laboratories. We describe here a combination of SILAC-based (stable isotope labeling by amino acids in cell culture) quantitative mass spectrometry and tandem-affinity purification to detect system-wide changes in ubiquitination and ubiquitin chain topologies that will be useful to probe the role of ubiquitin in the nervous system.

Key words

Ubiquitination SILAC HB-tag Tandem-affinity purification Ubiquitin-chain topology Mass spectrometry 



This work was supported by NIH (GM66164 and CA113823). David Meierhofer was an Erwin Schrödinger fellow supported by the FWF Austria.


  1. 1.
    Patrick, G. N. (2006) Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system. Curr Opin Neurobiol 16, 90–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Paul, S. (2008) Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 30, 1172–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Segref, A., and Hoppe, T. (2009) Think locally: control of ubiquitin-dependent protein degradation in neurons. EMBO Rep 10, 44–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Hershko, A., and Ciechanover, A. (1998) The ubiquitin system. Annu Rev Biochem 67, 425–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Pickart, C. M. (2004) Back to the future with ubiquitin. Cell 116, 181–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, I., and Rao, H. (2006) What’s Ub chain linkage got to do with it? Sci STKE 330, 18.Google Scholar
  7. 7.
    Kaiser, P., and Wohlschlegel, J. (2005) Identification of Ubiquitination Sites and Determination of Ubiquitin-Chain Architectures by Mass Spectrometry. Methods Enzymol 399C, 266–77.CrossRefGoogle Scholar
  8. 8.
    Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21, 921–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., and Bernards, R. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., and Peng, J. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Meierhofer, D., Wang, X., Huang, L., and Kaiser, P. (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7, 4566–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Mayor, T., Graumann, J., Bryan, J., MacCoss, M. J., and Deshaies, R. J. (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 6, 1885–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., Bates, G. P., Schulman, H., and Kopito, R. R. (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448, 704–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., Baldi, P., Huang, L., and Kaiser, P. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5, 737–48.PubMedGoogle Scholar
  15. 15.
    Kaiser, P., and Huang, L. (2005) Global approaches to understanding ubiquitination. Genome Biol 6, 233.PubMedCrossRefGoogle Scholar
  16. 16.
    Guerrero, C., Tagwerker, C., Kaiser, P., and Huang, L. (2006) An integrated mass ­spectrometry-based proteomic approach: quantitative analysis of tandem affinity-­purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteomics 5, 366–78.PubMedGoogle Scholar
  17. 17.
    Cronan, J. E., Jr. (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265, 10327–33.PubMedGoogle Scholar
  18. 18.
    Tagwerker, C., Zhang, H., Wang, X., Larsen, L. S., Lathrop, R. H., Hatfield, G. W., Auer, B., Huang, L., and Kaiser, P. (2006) HB tag ­modules for PCR-based gene tagging and ­tandem affinity purification in Saccharomyces cerevisiae. Yeast 23, 623–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Savage, D., Mattson, G., Desai, S., Niedlander, G., Morgensen, S., and Conklin, E. (1994) Avidin-Biotin Chemistry: A Handbook, 2nd ed., Pierce Chemical, Rockford.Google Scholar
  20. 20.
    Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2, 173–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Ong, S. E., Foster, L. J., and Mann, M. (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Mann, M. (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22, 1139–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biological Chemistry, College of MedicineUniversity of CaliforniaIrvineUSA

Personalised recommendations